Все эти соображения, объясняющие сдвиг глазодоминантности, весьма напоминают модель, позволяющую объяснить ассоциативное научение изменениями в синапсах. Эта модель была предложена психологом Дональдом Хеббом из Университета Мак-Гилла. Ее основная идея состоит в том, что синапс между двумя нейронами A и C становится тем более эффективным, чем чаще за возбуждением нейрона A следует возбуждение нейрона C, независимо от того, чем это последнее будет вызвано (рис. 144). Таким образом, для повышения эффективности синапса вовсе не обязательно, чтобы разряд нейрона C был
Рис. 144. Клетка C получает входы от клетки левого глаза A и от клетки правого глаза B. Согласно модели синапса Хебба, если разряды клетки C следуют за разрядами клетки A, то такая последовательность событий стремится усилить синапс A–>C.
Применим эту модель к бинокулярной конвергенции у нормального животного. Пусть клетка C — бинокулярная, аксон A идет от не доминантного, а аксон B — от доминантного глаза. Недоминантный глаз будет реже активировать клетку C, чем доминантный. Согласно гипотезе Хебба, синапс A–>C будет сохраняться или усиливаться, пока за импульсами в A будут следовать импульсы в C, а такая последовательность более вероятна, если в надлежащий момент времени от другого глаза по аксону B постоянно поступает «подкрепление». А именно это и будет происходить при точном совмещении изображений на обеих сетчатках. Если активность в A не сопровождается активностью в C, синапс A–>C за длительный период времени ослабеет. Получить прямое доказательство, что модель Хебба применима к косоглазию, — дело нелегкое (по крайней мере в ближайшем будущем), но сама идея, мне кажется, заслуживает внимания.
То, что в коленчатых телах, где нет или почти нет возможностей для конкуренции глаз, мы не смогли обнаружить заметных физиологических дефектов, казалось, подтверждает идею о том, что последствия закрытия одного глаза связаны с конкуренцией, а не с бездействием глаза. Правда, клетки коленчатого тела были атрофичными, но — рассуждали мы — вряд ли можно ожидать, что все будет ясно. Если конкуренция и в самом деле играет важную роль, то корковый слой 4C мог, как нам казалось, быть подходящим объектом для проверки этой идеи, поскольку клетки в нем тоже монокулярны и конкуренция маловероятна, так что чередование полосок, связанных с левым и с правым глазом, должно остаться ненарушенным. Итак, путем длинных микроэлектродных проходок через слой 4C мы начали выяснять, сохраняются ли такие полоски после закрытия одного глаза и остаются ли нормальными их размеры. Вскоре стало ясно, что слой 4C по-прежнему подразделяется на участки левого и правого глаз, как у нормальных животных, и что клетки в полосках, соединенных с ранее закрытым глазом, остались практически нормальными. Однако последовательности клеток с доминированием закрытого глаза оказались очень короткими, как если бы полоски были аномально узкими (около 0,2 мм вместо 0,4 или 0,5 мм), а полоски, принадлежащие открытому глазу, — соответственно более широкими.
Как только это стало доступным, мы начали использовать методику с инъекцией метки в глаз и транснейронным переносом ее в кору, чтобы получить прямое и наглядное подтверждение сделанных выводов. По прошествии периода депривации длительностью в несколько месяцев мы вводили кошке или обезьяне в тот или в другой глаз радиоактивную аминокислоту. Радиоавтографы показали заметное сужение полосок, связанных с ранее депривированным глазом, и соответственное расширение полосок, принадлежащих нормальному глазу. Микрофотография слева на рис. 145 иллюстрирует результаты инъекции радиоактивной аминокислоты в нормальный глаз. На этом снимке, сделанном, как обычно, в условиях темного поля, представлен срез, параллельный поверхности коры и проходящий через слой 4C. Узкие, прерывающиеся черные полоски соответствуют глазу, который был закрыт, а более широкие светлые (меченые) полоски — открытому глазу, в который ввели метку. На рис. 146 показана обратная картина, полученная после введения метки в ранее закрытый глаз. Этот срез был сделан поперек слоя 4C, поэтому мы видим «полоски» в поперечном сечении.