Читаем Глазами физика полностью

За несколько месяцев до приезда на пусковую площадку мы обычно тестировали экспериментальное оборудование в городе Уилмингтон, штат Массачусетс. Мы помещали телескоп в вакуумную камеру и понижали давление воздуха до уровня, который будет на высоте, то есть почти до трех тысячных от одной атмосферы. Затем мы охлаждали телескоп до – 50 °C и включали оборудование – все детекторы рентгеновского излучения – и на протяжении двадцати четырех часов подряд каждые двадцать минут по десять секунд отслеживали рентгеновские лучи из радиоактивного источника. Некоторые телескопы наших конкурентов – да-да, мы действительно относились к другим командам, занимавшимся такими же исследованиями, как к конкурентам, – иногда давали сбой из-за разрядки аккумуляторов при низких температурах, а то и вовсе не работали. Но с нами такого никогда не случалось, потому что мы очень тщательно тестировали оборудование. Если на этапе тестирования выяснялось, что аккумуляторы плохо держат заряд, мы разбирались, как при необходимости исправить ситуацию и сохранить энергию.

Была еще проблема коронного разряда – искрения высоковольтных проводов. Некоторое наше оборудование работало на очень высоком напряжении, а сильно разреженный воздух, давление в котором очень низкое, – идеальная среда для искрения проводов. Помните о жужжании, издаваемом высоковольтными линиями передач, о нем я упоминал в главе 7? Это и есть коронный разряд. Каждый физик-экспериментатор, имеющий дело с высоким напряжением, знает о вероятности коронного разряда. Я показываю примеры этих искр на своих лекциях. Там коронный разряд – зрелище красивое и веселое, но на огромной высоте в разреженном воздухе это настоящая катастрофа.

Для непрофессионалов объясняю: оборудование начинает работать с перебоями, и вы получаете так много электронных помех, что не можете выделить рентгеновские фотоны. Насколько серьезна эта проблема? Да она грандиозная! Вы вообще не получаете полезных данных в течение полета. Обычно она решается покрытием всех используемых в оборудовании высоковольтных проводов силиконовой изоляцией. Правда, некоторые исследователи делали это и все равно получали коронный разряд. Но наше тщательное тестирование и подготовка дали результаты. У нас ни разу не было коронных разрядов. Это лишь один из десятков сложных инженерных вопросов, связанных со строительством телескопов, – вот почему их изготовление столь дорого обходится.

Как же мы обнаруживали рентгеновское излучение, когда нам, несмотря на все трудности, все же удавалось вывести телескоп в верхние слои атмосферы? Ответ на этот вопрос не так уж прост, поэтому вам придется послушать мои объяснения. Начнем с того, что мы использовали специальный вид детектора (кристаллы йодида натрия), а не пропорциональные счетчики (заполненные газом), которые устанавливаются на ракетах, то есть приборы, способные обнаружить рентгеновские лучи с энергиями выше 15 кэВ. Когда рентгеновский фотон проникает в один из таких кристаллов, он может выбить электрон с его орбиты и передать ему свою энергию рентгеновского излучения (это называется фотоэлектрическим поглощением). Этот электрон, в свою очередь, создает в кристалле след из ионов, после чего останавливается. Когда ионы нейтрализуются, они высвобождают энергию – в основном в форме видимого света. Так получается вспышка света – в нее преобразуется энергия рентгеновского фотона. Чем выше энергия рентгеновских лучей, тем сильнее мигает световой индикатор. Мы использовали для обнаружения вспышек света и преобразования их в электрические импульсы фотоэлектронный умножитель (ФЭУ): чем ярче вспышка света, тем выше напряжение импульса.

Затем мы усиливали эти импульсы и отправляли их в дискриминатор, который измеряет напряжение электрических импульсов и сортирует их по величине, указывающей на энергетические уровни рентгеновского излучения. В те далекие дни мы регистрировали рентгеновское излучение только на пяти различных энергетических уровнях.

Чтобы получить запись обнаружений излучения после полета аэростата, мы регистрировали их в полете с указанием уровня энергии и времени обнаружения. Мы подсоединяли дискриминатор так, чтобы он направлял эти упорядоченные импульсы на светодиоды, которые создавали картинку огней, мигающих на пяти разных энергетических уровнях. И фотографировали эти мигающие огни непрерывно работающей камерой.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература