У нейтрального водорода один электрон. Если в него ударяет фотон, электрон сможет перейти с одного энергетического уровня на более высокий, поглощая энергию фотона. Но из-за квантования уровней энергии электрона это не может произойти с фотонами любой энергии. Подойдут только фотоны с нужной энергией (с конкретной частотой и длиной волны), позволяющей электрону совершить квантовый скачок с одного уровня на другой. Данный процесс (так называемое резонансное поглощение) убивает фотоны и создает на этой частоте отсутствие цвета в спектре, которое мы называем линией поглощения.
В видимой части спектра звезды имеются четыре линии поглощения водорода (на точно известных длинах волн, или цветах). Большинство элементов могут произвести гораздо большее число линий, потому что у них намного больше электронов, чем у водорода. По сути, у каждого элемента есть собственная уникальная комбинация линий поглощения, нечто вроде отпечатка пальцев. Мы точно знаем это благодаря исследованиям в лаборатории. Таким образом, тщательное изучение линий поглощения в спектре звезды может нам сказать, какие элементы присутствуют в ее атмосфере.
Однако когда звезда удаляется от нас, явление, известное как доплеровский сдвиг, заставляет весь ее спектр (в том числе и линии поглощения) смещаться в сторону красной части спектра (красное смещение). Если же спектр, наоборот, сдвинут в фиолетовую сторону, значит, звезда движется по направлению к нам. Тщательно измерив величину сдвига в длине волны линий поглощения звезды, можно вычислить скорость ее движется по отношению к нам.
Например, если мы наблюдаем двойную систему, каждая звезда будет двигаться половину своей орбиты в нашу сторону и вторую половину от нас. А ее спутник – наоборот. Если обе звезды достаточно яркие, мы увидим линии поглощения, смещенные и в красную, и в фиолетовую стороны спектра. Это укажет нам на то, что мы наблюдаем двойную звезду. Но из-за орбитального движения звезд линии поглощения будут двигаться вдоль спектра. Скажем, если орбитальный период составляет двадцать лет, каждая линия поглощения сделает полный проход по спектру за двадцать лет (десять лет на красное смещение и десять лет на фиолетовое).
Когда мы видим только красное смещение (или только фиолетовое) линий поглощения, мы все равно знаем, что это двойная система, если линии двигаются по спектру туда-сюда; а замер времени, которое требуется для совершения линиями полного цикла, позволит нам определить орбитальный период звезды. В каких случаях такое бывает? Например, тогда, когда одна из звезд слишком тусклая, чтобы ее было видно с Земли в оптическом диапазоне.
А теперь вернемся к источникам рентгеновского излучения.
Шкловский и другие
Еще в 1967 году советский физик Иосиф Самуилович Шкловский предложил модель для Sco X-1. «По всем своим характеристикам данная модель соответствует нейтронной звезде в состоянии аккреции[27]
… естественным и очень эффективным источником поставки газа для такой аккреции является поток газа, вытекающий из вторичного компонента тесной двойной системы в сторону основного компонента, представляющего собой нейтронную звезду».Я понимаю, что эти строки вряд ли потрясут вас до глубины души. Этому отнюдь не способствует и то, что сформулированы они довольно сухим техническим языком астрофизики. Но именно так общаются между собой специалисты практически в любой сфере деятельности. Моя же цель в учебной аудитории и главная причина, по которой я написал эту книгу, – перевести поистине поразительные, новаторские, иногда даже революционные открытия моих коллег-физиков на язык, понятный умному, любознательному неспециалисту. Иными словами, моя цель – навести мосты между миром ученых и вашим миром. Очень многие предпочитают говорить о деле исключительно с коллегами, что усложняет большинству людей – даже тем, кто действительно хочет разобраться в нашей науке, – задачу вхождения в этот мир.
Итак, давайте возьмем идею Шкловского и посмотрим, что же он предлагал. Система двойной звезды состоит из нейтронной звезды и спутника, материя из которого перетекает к нейтронной звезде. Таким образом, нейтронная звезда находится «в состоянии аккреции» – иными словами, она аккрецируется (накапливается) за счет материи своего спутника, звезды-донора. Какая странная идея, не так ли?
Как показало время, Шкловский был прав. Но вот что самое любопытное: он говорил только о Sco X-1, и многие астрономы отнеслись к его идее не слишком серьезно. Впрочем, для теорий это не редкость. Я не думаю, что обижу кого-либо из своих коллег-теоретиков, если скажу, что в астрофизике подавляющее большинство теорий оказываются неверными. И вполне логично, что многие люди, работающие в сфере наблюдательной астрофизики, их игнорируют.
Как оказалось, аккрецирующие нейтронные звезды представляют собой фактически идеальную среду для выработки рентгеновского излучения. А как же мы узнали, что Шкловский прав?