Первый закон Ньютона гласит: если на тело не действуют другие тела (либо действие этих тел компенсируется), то оно, будучи в состоянии покоя, так и остается в этом состоянии, а тело, пребывающее в движении, продолжает движение в том же направлении и с той же скоростью. Сам Ньютон формулировал это так: «Тело в состоянии покоя сохраняет это состояние, а тело в равномерном движении по прямой линии движется с той же скоростью в прежнем направлении, если только его не вынуждают изменить данное состояние прилагаемые к нему силы». Это закон инерции.
Концепция инерции нам всем отлично знакома, но если задуматься, понимаешь, что, по сути, она противоречит здравому смыслу. Сегодня мы принимаем этот закон как нечто само собой разумеющееся, даже несмотря на то, что часто он идет вразрез с нашим повседневным опытом. В конце концов, в реальном мире тела крайне редко движутся по прямой линии и обычно не продолжают двигаться до бесконечности. Мы ожидаем, что в какой-то момент они непременно остановятся. Ни один игрок в гольф никогда не сформулировал бы закона инерции, потому что только после крайне редких ударов мячик движется строго по прямой и очень часто останавливается, так и не докатившись до вожделенной лунки. Интуитивной была и остается совершенно противоположная идея, что тела от природы стремятся к состоянию покоя, доминировавшая в западном мышлении на протяжении тысячелетий, вплоть до появления революционного закона Ньютона.
Ньютон перевернул наше понимание движения объектов с ног на голову, объяснив, что мячик для гольфа часто останавливается, не докатившись до лунки, из-за того, что его движение замедляет сила трения; а Луна не уносится в космос, продолжая кружить вокруг Земли, потому что ее удерживает на орбите сила земного притяжения.
Чтобы оценить реальность инерции на более интуитивном уровне, вспомните, как трудно, катаясь на коньках, сделать поворот в конце катка – ваше тело упрямо стремится вперед, и вам надо точно рассчитать, какую силу применить к конькам и при каком угле наклона, чтобы успешно развернуться и поехать в другую сторону, а не свалиться на лед или не врезаться в ограждение. Если вы лыжник, подумайте о том, насколько проблематично быстро изменить курс, чтобы избежать столкновения с другим лыжником, вдруг оказавшимся на вашем пути. Причина, по которой мы гораздо чаще замечаем инерцию в подобных случаях, нежели в обычной повседневной жизни, заключается в том, что в обеих ситуациях сила трения, которая в нормальных условиях эффективно замедляет наши движения и помогает без труда изменить направление, очень мала. Только представьте, что бы произошло, если бы поле для гольфа было ледяным, – вы бы сразу увидели, что мяч без трения может двигаться вперед очень-очень далеко, намного дальше, чем на обычном покрытии.
А теперь обсудим, насколько революционной была эта идея Ньютона. Мало того что она перевернула прежние представления о движущихся телах, она еще указала путь к открытию множества постоянно действующих на нас невидимых сил, таких как силы трения, силы тяжести, магнитные и электрические силы. Вклад Ньютона настолько важен, что единица силы в физике названа его именем. Но великий ученый не только позволил нам «увидеть» эти скрытые силы, но и показал, как их измерить.
Своим вторым законом Ньютон обеспечил нас удивительно простым, но очень полезным инструментом для расчета сил. По мнению некоторых людей, знаменитое
Чтобы наглядно увидеть всего один из многочисленных примеров, объясняющих, почему эта формула очень полезна в повседневной жизни, рассмотрим рентгеновский аппарат. Согласитесь, определить точный диапазон энергий рентгеновских лучей при использовании этого оборудования чрезвычайно, жизненно важно. Вот как нам помогает в этом уравнение Ньютона.
Один из главных выводов в физике (мы подробнее обсудим его чуть позже) заключается в том, что на заряженную частицу (скажем, электрон, протон или ион), помещенную в электрическое поле, действует определенная сила. Если нам известен заряд частицы и напряженность электрического поля, можно вычислить действующую на нее электрическую силу. А зная ее, мы с помощью второго закона Ньютона можем вычислить ускорение частицы[10]
.Электроны в рентгеновском аппарате, прежде чем ударить по намеченной цели, ускоряются внутри рентгеновской трубки. Скорость, с которой они ударяют в цель, определяет диапазон производимых при этом энергий рентгеновского излучения. Изменение напряженности электрического поля позволяет изменить ускорение электронов. Таким образом, скоростью, с которой электроны ударяют в цель, можно управлять, выбирая нужный диапазон энергий рентгеновского излучения.