В первой главе я описывал, как «создаю» в аудитории синий свет, рассеивая белый свет от сигаретного дыма. Я достигаю этого эффекта, рассеивая синий свет по лекционному залу под углом около 90 градусов; этот свет тоже почти полностью поляризован. Студенты могут увидеть его через поляризаторы, которые всегда приносят на мои лекции.
Солнечный свет, отражающийся от воды или стекла, также может стать практически полностью поляризованным, если он (или свет от лампочки) падает на водяную или стеклянную поверхность под прямым углом, который мы называем углом Брюстера. (Дэвид Брюстер – шотландский физик XIX века, сделавший огромный вклад в развитие оптики). Вот почему моряки часто носят поляризующие солнечные очки – благодаря им они блокируют б
Я всегда ношу в бумажнике хотя бы один поляризатор –
Зачем я рассказываю вам все это о поляризованном свете? Затем, что свет от радуг почти полностью поляризован. Поляризация происходит, когда солнечный свет отражается внутри капли воды, что, как вы уже знаете, – необходимое условие для формирования радуги.
Я создаю на своих лекциях особый вид радуги (используя одну, хоть и очень большую, каплю воды) и благодаря этому могу доказать следующее: 1) красный находится на внешней части радуги, 2) синий (фиолетовый) – на ее внутренней части, 3) в середине радуги отображается яркий белый свет, которого никогда не увидишь во внешней части, и 4) свет радуги поляризован. Тема поляризации радуги меня чрезвычайно интересует (это одна из причин, почему я всегда ношу с собой поляризаторы).
Радуги и не только
Радуги – наиболее известное и красочное атмосферное явление, но отнюдь не единственное. Существует целый ряд других явлений атмосферы; некоторые из них сразу бросаются в глаза, а другие, напротив, мистически загадочны. Но давайте еще какое-то время останемся с радугами и посмотрим, куда это нас приведет.
Если внимательно посмотреть на очень яркую радугу, то на ее внутренней кромке иногда можно увидеть ряд чередующихся ярких и темным полос, которые называются дополнительными радугами. Чтобы понять это явление, нам придется отказаться от объяснения природы световых лучей, данного Ньютоном. Он считал, что свет состоит из частиц, поэтому, когда он представлял себе отдельные лучи света, проникающие в каплю дождя, преломляющиеся в ней и выходящие из нее, то предполагал, что они ведут себя так, как если бы были маленькими частицами. Но чтобы объяснить дополнительные радуги, о свете необходимо думать как о чем-то состоящем из волн. Для создания такой радуги световые волны должны пройти через дождевые капли менее миллиметра в диаметре.
Один из самых важных экспериментов во всей физике (его чаще всего называют опытом Юнга, или экспериментом на двух щелях) наглядно продемонстрировал, что свет состоит из волн. В этом знаменитом эксперименте, впервые проведенном в 1801–1803 годах, английский ученый Томас Юнг расщепил узкий луч солнечного света на два пучка и увидел на экране картинку (сумму двух пучков), которую можно было объяснить, только предположив, что свет состоит из волн. Позже данный эксперимент был проведен по-другому, с использованием двух щелей (или двух микроотверстий). Далее я буду исходить из предположения, что узкий пучок света проходит через два очень маленьких микроотверстия (расположенных близко друг к другу) в листе тонкого картона. Свет проходит через них и падает на экран. Если бы свет состоял из частиц, любая заданная частица проходила бы либо через одно отверстие, либо через другое (поскольку не могла бы пройти через оба) и, следовательно, мы видели бы на экране два ярких пятна. Однако картинка на экране иная. Она точно имитирует то, что ожидаешь увидеть, если на экране встречаются две волны – одна, прошедшая через первое микроотверстие, и одновременно вторая, идентичная первой, прошедшая через второе. Сложение этих двух волн подвержено тому, что мы называем интерференцией. Когда гребни волны из одной прорези совпадают со впадинами волн из другой, волны компенсируют друг друга и места на экране, где это происходит (их будет не одно), остаются темными. Разве это не удивительно – свет плюс свет равен тьме! И наоборот, в других местах экрана, где две волны синхронизированы друг с другом, нарастая и спадая одновременно, мы в результате видим очень яркие пятна (их тоже будет несколько). Таким образом, на экране отобразится узор, состоящий из чередующихся темных и светлых пятен, и это именно то, что увидел Юнг во время опыта с расщепленным лучом.