Между тем при утилизации солнечной энергии перегрева Земли опасаться нет оснований. Солнце ежесекундно посылает нам сорок триллионов больших калорий. Правда, большая часть этих щедрых золотых потоков рассеивается и лишь отчасти поглощается атмосферой. Поверхности достигает около трети лучистой энергии; в южных широтах больше, в северных — меньше. Если всю ее полностью превратить в электрическую, то в производственной упряжке оказалось бы куда больше лошадиных сил, чем могли бы дать термоядерные станции. Даже десятой доли солнечного тепла и света — тех, что падают на поверхность одной только суши, — хватило бы для получения гигантских количеств энергии. В тысячи раз больших, чем ее нынешнее мировое производство.
Чтобы добиться желанного результата, придется покрывать фотоэлементами огромные участки суши, а может быть, и водоемов. Однако тонкие кристаллические пленки, германиевые или кремниевые, — штука капризная. Сейчас их составляют из отдельных кусочков — точь-в-точь как мозаичное панно. Но одно дело мозаика размером с книгу или с газету, как на спутнике, а другое — гектары лучеуловителей. Одно дело безвоздушный штиль космоса, другое — беспокойное царство земных стихий. Порыв сильного ветра, удар разгулявшейся волны — и хрупкий материал вышел из строя. Несравненно лучше гибкие полупроводники. Только где их взять?
Полимеры… Сколько осуществленных желаний, а еще больше надежд связано у людей с этим словом! Юная гвардия синтетической химии уверенно вытесняет ветеранов, служивших технике верой и правдой сотни и тысячи лет.
Прочен и красив гранит. Но как трудно его обрабатывать! Просто обрабатывать дерево, но постройки из него боятся малейшей искорки, быстро гниют. Стоек к сырости и огню железобетон, но уж слишком он «тяжел на подъем». Легок и долговечен алюминий, однако сквозь него ничего не увидишь. К тому же он легко растворяется в кислотах и щелочах. Бесстрашно отражает химические атаки стекло. Прозрачное, оно ничего не скрывает от любопытного глаза. Но недаром же его хрупкость пошла в пословицу!
Не сделаешь шестерню из камня, электрический изолятор из березы, корпус ракеты из железобетона, химическую колбу из алюминия, рессору из стекла.
Иное дело — полимеры. Сочетая в себе достоинство материалов-ветеранов, они обладают невиданными преимуществами. Из них уже делают прочные, легкие, прозрачные, химически стойкие, неприхотливые и недорогие пленки, под которыми прячутся целые гектары плантаций от мороза и других капризов погоды. По своим механическим свойствам полимеры были бы идеальным конструкционным материалом для солнечных ГЭС — гелиоэлектрических станций. Эх, если бы они обладали еще и полупроводниковыми свойствами! Тогда можно было бы…
Дух захватывает, если подумать, что принесут с собой полимеры-полупроводники! Электростанции в рулонах. Рубашка, которая одновременно является батарейкой. Мягкие приемники, телевизоры, даже электронно-счетные машины, складывающиеся, как зонтик, или, чего доброго, как носовой платок. С такой «амуницией» хоть на Луну. Однако насколько реальны эти мечты?
Помните сопряженные связи? Пожалуй, это и есть тот Рим, куда ведут сегодня дороги надежд квантовой химии.
Полимеры с сопряженными связями находятся в фокусе внимания ученых. Оно и понятно почему.
Если сигма-электроны, прикрепленные к атомам, вдруг срываются с насиженного места, химическая связь лопается. Соединение прекращает свое существование, распадаясь на два других. Совсем иначе ведут себя пи-электроны в сопряженных связях. Их никак не назовешь домоседами. Они могут свободно разгуливать вдоль всей цепочки атомов, придавая молекуле свойства сверхпроводника. Или полупроводника. Все зависит от различий в длине ординарных и двойных связей.
Вот гексатриен CH2 = CH—CH = CH—CH = CH2. Как и в бензоле, в нем шесть углеродных атомов и три двойные связи. Похоже, будто перед нами бензольное кольцо, разрезанное одним взмахом ножниц и распрямленное в линейную цепочку. Разве что по бокам еще присоединилось по атому водорода. Но присмотритесь попристальней: в нем всего два одиночных штриха. А парных — три! И хотя эффект сопряжения налицо, чередующиеся связи неравноценны. Во всяком случае, межатомные расстояния С = С и C—C неодинаковы. Энергия связи тоже. Это доказывает расчет. И подтверждает опыт.