Dyson, Taylor and others saw a possible application for this process. As the Space Age dawned, US defense analysts recognized that there was no known defense against orbital Soviet nuclear warheads. But perhaps a spacecraft propelled by external nuclear explosions might do the trick.
This was the birth of the initially top-secret Project Orion. On a future spacecraft, Orion crews would carry with them small nuclear charges. (Okay, they would be small bombs.) The charges would be discharged on command behind a pusher plate coated with ablative material. This pusher plate, which would be impacted by the nuclear blast, would be connected to the rest of the ship by the world’s largest shock absorbers.
Although a full-scale Orion was never constructed, small test models propelled by chemical explosives were successfully filmed careening across the sky. One is on display (near a model of Star Trek’s Starship
As the Project Orion study continued, it became evident that Orion “interceptors” could be capable of velocities in excess of 30 miles (50 kilometers) per second. Some conceptual versions could lift from Earth under their own nuclear drive, unfortunately leaving behind a huge wake of radioactive particles. Variants might ride as the second stage of a Saturn V rocket, exhausting their A-bombs well above Earth’s delicate biosphere.
The high time for Project Orion was in 1961-1963. NASA had been commissioned by President Kennedy to deliver and return humans from the Moon before 1970. Most analysts preferred the Saturn V booster to launch the Moon ships, but this rocket had not yet been tested. So a number of back-ups were suggested. One was Orion.
In this heady period, Dyson, Taylor and their associates investigated the interplanetary potential of Orion. As a Saturn V upper stage, it had the potential of ferrying astronauts to Mars on month-long journeys. Habitats, rovers, greenhouses and livestock could come along as well.
But alas, it was not to be. The Atmospheric Test Ban Treaty dampened the prospects for Orion. And the success of Saturn V doomed it. Before the first Lunar Modules swooped down over the lunar plains, Orion and its extensive documentation seemed headed for storage in some super-secret government depository, perhaps located next to the box containing Indiana Jones’s Ark of the Covenant.
Freeman Dyson was angry. And Freeman Dyson distrusted large government bureaucracies. So he methodically hatched a scheme to save Project Orion from oblivion.
Being a physicist, Dyson planned to publish a paper describing the potential of Orion in a journal. But most physics, astronomy, and astronautics journals have circulations of only a few thousand. He chose to publish in
Of course he had to use clever approximations. One was the yield in equivalent megatons of TNT of a deuterium-fueled thermonuclear explosive. Dyson knew that the USSR had just air tested the largest H-bomb ever exploded. The yield of the test was well established and the type of aircraft carrying the device had been announced. Dyson probably could have exactly stated the yield of a fusion explosive—instead, he consulted a standard reference (
Published in late 1968, Dyson’s paper established him as an early hero of the “Interstellar Movement.” Even with his many approximations, he demonstrated that huge, multi-kilometer fusion-pulse world ships could be constructed that would take up to one thousand years to reach the nearest stars. If the entire US/USSR 1968-vintage thermonuclear arsenals had been devoted to Project Orion, as many as 20,000 people could have been relocated to the Alpha / Proxima Centauri system. What a happy use for the bombs!
Projects