Читаем Голая статистика. Самая интересная книга о самой скучной науке полностью

Вряд ли нам удастся получить достоверные коэффициенты регрессии по какой-либо из этих двух переменных (кокаин или героин); мы можем также проигнорировать более сильную и важную зависимость между результатами экзаменов и употреблением какого-то одного из этих наркотиков. Когда две объясняющие переменные сильно коррелированны между собой, исследователи обычно используют в уравнении регрессии какую-то одну из них; как вариант, они могут создать некую составную переменную, например «употреблял кокаин или героин». Если же исследователи хотят контролировать в целом социально-экономическое положение учащегося, они могут включить переменные «образование матери» и «образование отца», поскольку это обеспечивает важное указание на уровень образования соответствующей семьи в целом. Однако если цель регрессионного анализа – вычленить влияние либо образования отца, либо образования матери, то включение в уравнение обеих переменных скорее запутает вопрос, чем внесет в него ясность. Корреляция между уровнями образования мужа и жены столь высока, что мы не можем полагаться на то, что регрессионный анализ даст нам коэффициенты, которые позволят надлежащим образом вычленить влияние образования кого-либо из родителей (это так же трудно, как обособить влияние употребления кокаина от влияния употребления героина)[69].

Экстраполяция за границы имеющихся данных. Регрессионный анализ, как и все формы статистического вывода, помогает нам лучше понять окружающий мир. Мы пытаемся выявить закономерности, которые будут общими и для более крупной совокупности. Однако наши результаты будут справедливы лишь для совокупности, подобной выборке, в отношении которой выполнялся анализ. В предыдущей главе я создал уравнение регрессии, позволяющее предсказывать вес, основываясь на ряде независимых переменных. Значение R^2 в моей окончательной модели равнялось 0,29; это означает, что оно дает возможность объяснить разброс веса для крупной выборки людей, если все они оказались взрослыми.

Итак, что же произойдет, если мы воспользуемся нашим уравнением регрессии для предсказания вероятного веса новорожденного младенца? Давайте проверим. При рождении рост моей дочери составлял 21 дюйм. Допустим, ее возраст в момент рождения равнялся нулю; у нее, конечно же, не было образования и она не занималась спортом. Она относилась к белой расе и была женского пола. Уравнение регрессии, основанное на данных America’s Changing Lives, предсказывает, что ее вес при рождении должен иметь отрицательную величину: -19,6 фунта. (В действительности она весила 8,5 фунта.)

Авторы одного из исследований, выполнявшихся по заказу британского правительства (мы упоминали о них в предыдущей главе), сделали совершенно четкий вывод: «Неспособность работника влиять на свою рабочую среду ассоциируется с повышенным риском развития заболеваний сердечно-сосудистой системы среди государственных служащих»{81} (курсив мой).

Интеллектуальный анализ (слишком много переменных). Если игнорирование важных переменных представляет собой потенциальную проблему, то, может быть, ее возможным решением будет максимальное наращивание количества объясняющих переменных в уравнении регрессии? Отнюдь! Ваши результаты могут быть поставлены под угрозу, если вы включите в уравнение регрессии чересчур большое число переменных, особенно если речь идет о дополнительных объясняющих переменных без какого-либо теоретического обоснования такого решения. Например, не следует разрабатывать стратегию исследования, построенную на следующей предпосылке: поскольку нам неизвестно, что вызывает аутизм, нужно включить в уравнение регрессии как можно больше потенциальных объясняющих переменных, чтобы увидеть, что именно может оказаться статистически значимым; затем, возможно, мы сумеем получить кое-какие ответы. Если вы включите в уравнение регрессии достаточно большое число лишних переменных, то одна из них, по чистой случайности, обязательно достигнет порога статистической значимости. Еще одна опасность заключается в том, что лишние переменные порой не так-то легко распознать именно как лишние. Опытные исследователи могут всегда обосновать теоретически, постфактум, почему та или иная необычная переменная, которая в действительности совершенно бессмысленна, оказывается статистически значимой[70].

Перейти на страницу:

Похожие книги

К черту недостатки! Как использовать свои сильные стороны
К черту недостатки! Как использовать свои сильные стороны

Стремясь повысить прибыль и эффективность компаний, современные руководители непрерывно и тщетно борются с недостатками сотрудников. Большинство амбициозных людей также стремится стать лучше и профессиональнее. Для этого они изо дня в день из последних сил пытаются исправить свои недостатки. Но все это не работает!Маркус Бакингем, один из ведущих мировых специалистов по менеджменту и лидерству, провел масштабное международное исследование с целью выяснить пути, ведущие к максимальной самореализации человека и предельной эффективности бизнеса.Оказывается, для того, чтобы достичь профессионального совершенства и получать удовольствие от каждого прожитого дня, не нужно исправлять свои недостатки и преодолевать слабые стороны. Сосредоточьтесь на сильных сторонах и максимально развивайте их. Только в этом случае вы и ваша компания достигнете настоящего успеха.Автор подробно и убедительно, на примере реальных историй крупных компаний и данных научных исследований, показывает, как отыскать в себе качества, развив которые можно сделать успешную карьеру и достичь внутренней гармонии. Как, распределив обязанности сотрудников в соответствии с их уникальными способностями, руководитель может дать новый импульс развитию бизнеса.

Виктория Шилкина , Маркус Бакингем

Карьера, кадры / Публицистика / О бизнесе популярно / Документальное / Финансы и бизнес
Как заработать, если умеешь писать
Как заработать, если умеешь писать

Сейчас пишут все. Но как найти свой собственный стиль? Как раскрутить себя и заработать, если уже умеешь писать? Эта книга – неоценимое пособие для каждого, кто хочет научиться писать так, чтобы его читали миллионы. А также для тех, кто хочет издать уже написанное.– Простые приемы, которыми пользуются известные литераторы;– Отличия графомана от писателя;– Все хитрости и ловушки издательств;– Как заработать на писательстве;И многое другое…Ирина Горюнова – владелец успешного литературного агентства, которое работает как с начинающими, так и со звездными авторами, в том числе с Татьяной Догилевой, Гариком Сукачевым, Романом Фадом, Инной Бачинской и другими. Книги Ирины выходят в крупнейших издательствах – «АСТ», «ЭКСМО», «РИПОЛ классик», «Время» и других. Вот почему именно она знает ответ на вопрос – КАК ЗАРАБОТАТЬ, ЕСЛИ УМЕЕШЬ ПИСАТЬ?

Ирина Стояновна Горюнова

Карьера, кадры / Руководства / О бизнесе популярно / Финансы и бизнес / Словари и Энциклопедии