Таким образом, на основании нашей выборки можно заключить, что в 95 случаях из 100 интервал 1310,4 кубических сантиметра ±26 (что равняется двум стандартным ошибкам) будет содержать средний объем головного мозга для
Используя ту же методологию, мы можем с 95 %-ной уверенностью утверждать, что интервал 1238,8 ± 36, или диапазон от 1202,8 до 1274,8 кубических сантиметра, будет включать средний объем головного мозга для здоровых детей в генеральной совокупности.
Да, вас, наверное, утомило обилие числовых показателей. Возможно, вы уже зашвырнули книгу в дальний угол[48]
. Если же еще нет (или раскаялись и возобновили чтение), то должны были обратить внимание на то, что наши доверительные интервалы не перекрываются.Это первый намек на вероятность существования какой-то анатомической особенности в головном мозге детей, страдающих аутизмом. Однако это всего лишь подсказка. Ведь сделанные заключения основываются на данных, описывающих небольшое число детей (менее 100 человек). Нельзя исключать вариант, что мы имеем дело с какими-то аномальными выборками.
Одна финальная статистическая процедура способна внести ясность в ситуацию. Если бы статистика была одним из олимпийских видов спорта, например фигурным катанием, то это было бы последним видом программы выступлений, после которой преданные болельщики бросают на лед букеты цветов. Мы можем точно вычислить вероятность наблюдения по меньшей мере столь же значительной разницы средних значений (1310,4 кубических сантиметра в сравнении с 1238,8 кубическими сантиметрами), если действительно между объемом головного мозга детей-аутистов и всех остальных детей в общей совокупности никакого отличия нет. Мы можем найти p-значение для наблюдаемой разницы в средних значениях.
Чтобы вы прямо сейчас не зашвырнули эту книгу в самый дальний угол комнаты, соответствующая формула будет приведена в приложении. Впрочем, на интуитивном уровне все должно быть достаточно понятно. Если мы извлекаем две большие выборки из одной и той же совокупности, то можно ожидать, что их средние значения будут очень близки между собой. Более того, в идеале они должны быть одинаковы. Если бы, например, средний рост выбранных мною 100 баскетболистов из НБА составлял 6 футов и 7 дюймов, то я был бы вправе ожидать, что в какой-нибудь другой случайной выборке 100 баскетболистов из НБА средний рост игроков будет близок к 6 футам и 7 дюймам. Ладно, возможно, средний рост игроков в этих двух выборках будет отличаться на один-два дюйма. Однако вероятность того, что он будет разниться на 4 дюйма, окажется низкой, а того, что на 6 или 8 дюймов, будет еще ниже. Мы можем вычислить стандартную ошибку для разности между средними значениями двух выборок, которая может служить мерой ожидаемого разброса (но в среднем) при вычитании среднего значения одной выборки из среднего значения другой. (Как указывалось ранее, соответствующая формула приводится в приложении
к этой главе.) Важно то, что мы можем использовать эту стандартную ошибку для определения вероятности того, что две выборки сформированы из одной и той же совокупности. Принцип действия этого механизма таков.1. Если две выборки сформированы из одной и той же совокупности, мы имеем все основания предполагать, что разница между их средними значениями равна нулю.
2. Согласно центральной предельной теореме, в повторных выборках разница между этими двумя средними значениями будет распределена примерно по нормальному закону. (Итак, вы уже влюбились в центральную предельную теорему или еще нет?)
3. Если обе выборки действительно сформированы из одной и той же совокупности, то приблизительно в 68 случаях из 100 разница между их средними значениями будет отличаться от нуля не более чем на одну стандартную ошибку, в 95 случаях из 100 – не более чем на две стандартные ошибки, а примерно в 99,7 случая из 100 – не более чем на три стандартные ошибки. Так вот что побудило исследователей сделать вывод, о котором мы узнали из статьи об аутизме, опубликованной в The Wall Street Journal.