Читаем Голая статистика. Самая интересная книга о самой скучной науке полностью

Существует так много потенциальных «регрессионных ловушек», что я решил посвятить их рассмотрению всю следующую главу. Пока же будем считать, что на нашем пути ни одна из них не встретится. Регрессионный анализ обладает замечательным свойством вычленять в каждом отдельном случае статистическую связь, которая представляет для нас интерес, например связь между невозможностью человека в достаточной степени контролировать содержание, способы и условия выполнения своей работы и развитием сердечно-сосудистых заболеваний, учитывая при этом другие факторы, которые могут внести в нее искажения.

Как действует данный механизм? Если нам известно, что мелкие государственные служащие Британии курят чаще, чем их начальники, то как нам определить, в какой мере плохое состояние их сердечно-сосудистой системы обусловлено спецификой работы, а в какой – этой пагубной привычкой? Оба фактора кажутся неразрывно связанными между собой.

Регрессионный анализ (выполненный надлежащим образом!) позволяет разделить эти факторы. Чтобы объяснить процесс на интуитивном уровне, мне придется начать с базовой идеи, лежащей в основе всех форм регрессионного анализа, от простейших статистических связей до сложных моделей, разработанных лауреатами Нобелевской премии. По своей сути регрессионный анализ стремится найти «наилучшее приближение» линейной зависимости между двумя переменными. Простой пример – зависимость между ростом и весом людей. Те, кто выше ростом, как правило, весят больше, хотя эта закономерность соблюдается не всегда. Если бы мы построили диаграмму разброса для роста и веса группы студентов-выпускников, то получили бы нечто наподобие того, что уже видели в главе 4.

Если бы вас попросили описать получившуюся картину, вы бы наверняка сказали что-то вроде: «Вес, по-видимому, увеличивается пропорционально росту». Такую догадку вряд ли можно назвать озарением. Регрессионный анализ позволяет нам пойти дальше и «провести линию», которая точнее всего отражает линейную зависимость между этими двумя переменными.



Можно провести множество линий, которые будут отражать соотношение между ростом и весом. Но как знать, какая из них это делает точнее всего? К тому же посредством какого критерия мы определяем эту линию? Регрессионный анализ обычно использует методологию под названием стандартный метод наименьших квадратов, МНК. Если читателя интересуют его технические подробности и он хочет узнать, почему МНК обеспечивает «наилучшее приближение», ему придется обратиться к более солидным учебникам по статистике. Ключевыми словами в названии МНК являются «наименьшие квадраты»: МНК определяет линию, минимизирующую сумму квадратов разностей. Это не настолько сложно, как может показаться на первый взгляд. Каждое наблюдение в нашей совокупности данных «рост/вес» характеризуется разностью, которая представляет собой его расстояние по вертикали от линии регрессии; это не относится к наблюдениям, расположенным непосредственно на линии: для них разность равняется нулю. (На представленной ниже диаграмме разброса разность отмечена для некоего гипотетического лица A.) На интуитивном уровне должно быть понятно, что чем больше сумма разностей в целом, тем худшее приближение обеспечивает данная линия. Единственное, что может быть непонятно в МНК на интуитивном уровне, это то, что в соответствующей формуле суммируются квадраты каждой разности (тем самым увеличивается весовой коэффициент, назначаемый наблюдениям, которые расположены особенно далеко от линии регрессии, то есть «отщепенцам»).

Обычный метод наименьших квадратов позволяет определить линию, которая минимизирует сумму квадратов разностей, как показано ниже.



Если технические подробности вызывают у вас головную боль, можете не обращать на них внимания. Важно запомнить главное: стандартный метод наименьших квадратов позволяет получить наилучшее описание линейной зависимости между двумя переменными. В результате мы получаем не только линию как таковую, но и – как вы, наверное, помните из курса геометрии в средней школе – уравнение, описывающее ее. Оно известно как уравнение регрессии и имеет следующий вид: y = a + bx, где y – вес в фунтах, a – отрезок, отсекаемый этой линией на оси Y (то есть значение y, когда x = 0), b – коэффициент наклона линии, а x – рост в дюймах. Коэффициент наклона b найденной нами линии описывает «наилучшую» линейную зависимость между ростом и весом для соответствующей выборки, как определяется стандартным методом наименьших квадратов.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»
27 принципов истории. Секреты сторителлинга от «Гамлета» до «Южного парка»

Не важно, что вы пишете – роман, сценарий к фильму или сериалу, пьесу, подкаст или комикс, – принципы построения истории едины для всего. И ВСЕГО ИХ 27!Эта книга научит вас создавать историю, у которой есть начало, середина и конец. Которая захватывает и создает напряжение, которая заставляет читателя гадать, что же будет дальше.Вы не найдете здесь никакой теории литературы, академических сложных понятий или профессионального жаргона. Все двадцать семь принципов изложены на простом человеческом языке. Если вы хотите поэтапно, шаг за шагом, узнать, как наилучшим образом рассказать связную. достоверную историю, вы найдете здесь то. что вам нужно. Если вы не приемлете каких-либо рамок и склонны к более свободному полету фантазии, вы можете изучать каждый принцип отдельно и использовать только те. которые покажутся вам наиболее полезными. Главным здесь являетесь только вы сами.В формате PDF A4 сохранен издательский макет книги.

Дэниел Джошуа Рубин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная прикладная литература / Дом и досуг
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Психология подросткового и юношеского возраста
Психология подросткового и юношеского возраста

Предлагаемое учебное пособие объективно отражает современный мировой уровень развития психологии пубертатного возраста – одного из сложнейших и социально значимых разделов возрастной психологии. Превращение ребенка во взрослого – сложный и драматический процесс, на ход которого влияет огромное количество разнообразных факторов: от генетики и физиологии до политики и экологии. Эта книга, выдержавшая за рубежом двенадцать изданий, дает в распоряжение отечественного читателя огромный теоретический, экспериментальный и методологический материал, наработанный западной психологией, медициной, социологией и антропологией, в талантливом и стройном изложении Филипа Райса и Ким Долджин, лучших представителей американской гуманитарной науки.Рекомендуется студентам гуманитарных специальностей, психологам, педагогам, социологам, юристам и социальным работникам. Перевод: Ю. Мирончик, В. Квиткевич

Ким Долджин , Филип Райс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Психология / Образование и наука