Читаем Голографическая интерферометрия и лазерная микроскопия эритроцитов полностью

Построение поперечного сечения эритроцитов позволяет проводить количественную оценку формы клетки. Для этого, при описании сечения эритроцита нами были введены коэффициенты: основные a(DC), b (BD), c (ED), d (AE) численные значения которых определялись по данным интерферометрии (Рис. 2) и производные: Кϕ = (b – d)/ c – коэффициент, описывающий степень прогиба центральной части клетки. Кэл.= b/a ,описывает периферическую часть’ клетки и с/R ( R радиус) показывает относительное расстояние от центра эритроцита до точки, где толщина клетки максимальна. Эти коэффициенты были использованы в дальнейшем для оценки изменений формы эритроцитов в норме и патологии (Рис. 5).




Рис. 2. Иллюстрация к определению основных ‘параметров формы эритроцитов (пояснение в тексте)

Величины для концентрации гемоглобина и его ‘массы в эритроцитах были получены для эритроцитов, переведенных в сферическую форму. Величина ∆n связана с объемной концентрацией внутриклеточных веществ (гемоглобина)– Cv ( Feleppa ‚ 1972) . Отсюда для концентрации гемоглобина имеем: Cv = ∆n/α, где α – характеристический коэффициент, определяемый оптическими свойствами вещества.

Масса гемоглобина m, определяется как произведение концентрации гемоглобина на, объем эритроцита. Для клеток сферической формы получаются простые выражения для Сv и m

Cv = 1,344 (∆Y max/S R) (2)

m = 5,63 ∆Ymax./S (3)

Где ∆Y max – максимальное отклонение интерференционной полосы, проходящей через центр эритроцита, S – расстояние между полосами вне клетки, R – радиус эритроцита.

Наблюдение эритроцитов в проходящем и отраженном пользованием лазерного освещения, с использованием микрокиносъемки и видеозаписи , позволило получить новые данные о процессах, преобразования формы эритроцитов от диска к сфере. Интерферограммы эритроцитов, полученные при их исследовании в отраженном свете, позволили наблюдать активное движение внутри эритроцитов в переходной стадии преобразования формы клетки (Рис. 6).

Проделанные в работе расчёты разрешающей способности лазерной микроскопии, оценка чувствительности голографической интерферометрии, определение погрешностей измерений, параметров формы и массы эритроцитов, показали, что предложенные методики оценки со стояния живых, нефиксированных эритроцитов расширяют возможности традиционных методов цитологического анализа и могут быть успешно использованы для количественных и качественных исследований эритроцитов и других типов клеток.

2. Сравнительная характеристика свойств эритроцитов по данным голографической интерферометрии и’ лазерной микроскопии в норме и патологии

В этой серии исследований эритроциты в аутоплазме сохраняли нормальную форму до конца эксперимента. Нами наблюдалось наличие неоднородности в распределении эритроцитов в зависимости от диаметра. Во всех обследованных группах детей /здоровых, больных диффузным гломерулонефритом, сахарным диабетом, наследственным сфероцитозом /НС/ наблюдалось полимодальное распределение эритроцитов.

Средние значения отдельных мод не зависели от вида патологии. Было выделено 5 средних модовых значений диаметров эритроцитов: 6,75 мкм, 7,45 мкм, 8,20 мкм, 8,80 мкм, 9,40 мкм. Процентное распределение эритроцитов по этим группам показало, что в норме 51,5% клеток относятся к группе со средним диаметром 8,20 мкм. При сахарном диабете зв этой группе находится 16,0% клеток, и 63,04 со средним диаметром 8,80 мкм. При гломерулонефрите менее выражено наличие центрального пика (38,5% со средним диаметром 8,20 мкм, 32,5% 8,80 мкм). При наследственном микросфероцитозе 35,0% эритроцитов имеют средний диаметр 8,20 мкм, и значительное число клеток малого диаметра (37,5# 7,45 мкм, 27,24 6,75 мкм). В отдельных случаях вместо полимодального распределения эритроцитов наблюдались две достоверно различающиеся группы (Р <0,05).

Сравнение эритроцитов по размерам: диаметр, толщина, площадь поверхности, объем, коэффициент сферичности, по параметрам формы Кϕ, К эл. С/R , по массе и концентрации гемоглобина в клетках не выявило значительных различий между группами здоровых детей и детей больных диффузным гломерулонефритом и сахарным диабетом. Популяции эритроцитов периферической крови здоровых детей и детей больных НС достоверно различались по всем параметрам (Р‹0,05) . (Таблица 1.) кроме объема, коэффициента С/R, массы (30,9 ± 1.1 пг, 29,1± 0,8 пг) и концентрации гемоглобина в клетках (36,6± 1,45%, 38,2± 1,46%).




Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука