Дэниэл Харрис, ученик Койпера, убедительно доказал, что Титан красноватый. Возможно, мы видим на нем такую же ржавую поверхность, как на Марсе. Чтобы еще кое-что узнать о Титане, можно было измерить поляризацию отражаемого им солнечного света. Обычный солнечный свет не поляризован. Джозеф Веверка, в настоящее время сотрудник Корнеллского университета, был моим аспирантом в Гарварде; можно сказать, Койпер приходился ему «научным дедушкой». В своей докторской диссертации, которую Веверка защитил около 1970 г., он описал измерения поляризации Титана и открыл, что она изменяется в зависимости от относительного расположения самого Титана, Солнца и Земли. Но это явление совершенно не походило на аналогичные изменения, скажем, у Луны. Веверка пришел к выводу, что характер подобных изменений согласуется с наличием обширных облаков или дымки на Титане. Рассматривая этот спутник через телескоп, мы не видим его поверхность. Мы ничего не знаем о том, какова эта поверхность. Не представляем, насколько глубоко под облаками она находится.
Итак, к началу 1970-х гг. благодаря наследию Гюйгенса и его интеллектуальных потомков мы как минимум узнали, что у Титана плотная, насыщенная метаном атмосфера, что он, вероятно, окутан вуалью красноватых облаков или аэрозольной дымкой. Но какие облака могут быть рыжими? В начале 1970-х гг. мы с коллегой Бишуном Харе ставили в Корнелле эксперименты: облучали различные модели насыщенной метановой атмосферы ультрафиолетом или потоками электронов. В результате у нас получался красноватый или коричневатый осадок; это вещество покрывало стенки лабораторных сосудов. Мне казалось, что если богатый метаном Титан имеет красновато-коричневые облака, то они вполне могут походить по составу на то вещество, которое мы получали в лаборатории. Мы назвали этот материал «толин», что в переводе с греческого означает «мутный». Сначала мы могли только гадать, из чего состоит толин. Он представлял собой некую вязкую органику, образующуюся при распаде исходных молекул и при последующей рекомбинации молекулярных фрагментов, состоящих из атомов углерода, водорода и азота.
Слово «органика» не подразумевает биологического происхождения. По давней традиции, закрепившейся в химии более века назад, молекулы называются «органическими», просто если их основу образуют атомы углерода (за исключением немногих простейших молекул, например, моноксида углерода CO или диоксида углерода CO2). Поскольку в основе земной жизни лежат органические соединения, а Земля в течение какого-то времени была
В 1980-м и 1981 г. в систему Сатурна прибыли «Вояджер-1» и «Вояджер-2» – это были эпохальные события в изучении Титана. Датчики ультрафиолетового, инфракрасного и радиоизлучения позволили определить через атмосферу, каковы давление и температура на Титане – от скрытой поверхности до границы между атмосферой и космосом. Мы узнали, на какой высоте находятся верхушки облаков. Выяснилось, что атмосфера Титана в основном состоит из азота N2 – как и нынешний земной воздух. Другой важнейшей ее составляющей, как правильно предположил Койпер, является метан CH4 – то самое сырье, из которого на Титане образуются органические молекулы.
На Титане было обнаружено множество простых органических молекул, в основном углеводородов и нитрилов. В самых сложных из этих молекул содержится по четыре «тяжелых» атома (углерода и/или азота). Молекулы углеводородов состоят только из атомов углерода и водорода, самые известные углеводороды – это природный газ, нефть и парафины. (Они заметно отличаются от углеводов, таких как сахара и крахмал; в углеводах содержатся еще и атомы кислорода.) Нитрилы – это молекулы, содержащие атомы углерода и азота, связанные особым образом. Самый известный нитрил – это HCN, газ циановодород, смертельный для человека. Но циановодород – одно из звеньев того процесса, в результате которого на Земле возникла жизнь.
Было соблазнительно обнаружить эти простые органические молекулы в верхних слоях атмосферы Титана – даже если их доля составляет одну на миллион или на миллиард других молекул. Могла ли подобная атмосфера существовать на девственной Земле? В настоящее время масса атмосферы Титана примерно в десять раз больше земной, но и молодая Земля также могла обладать более плотной атмосферой.
Более того, «Вояджер» открыл обширную область высокоэнергетических электронов и протонов, окружающих Сатурн; они захвачены магнитным полем планеты. Титан, обращаясь вокруг Сатурна, то окунается в эту магнитосферу, то выныривает из нее. Пучки электронов (плюс солнечный ультрафиолет) бомбардируют верхние слои атмосферы Титана точно так же, как заряженные частицы (и солнечный ультрафиолет) попадали в атмосферу первозданной Земли.