Еще достоинство: транзисторы работали при комнатных температурах, не нуждались в разогреве. А люди старшего поколения помнят, как бесконечно тянулось время, пока «грелись лампы», как долго надо было ждать, когда радиоприемник наконец заговорит. Потому-то транзисторы и могут работать на слабом токе, с напряжением всего в несколько вольт (лампы требовали ста вольт и выше), отчего им достаточно энергии маломощных батареек и других слабых источников энергопитания.
Но, пожалуй, главный козырь транзисторов – их миниатюрность, уже первые из них не превышали величины булавочной головки. Объясняется это тем, что, как изолятор, кристаллическое вещество намного эффективнее вакуума, что и позволяет размещать различные компоненты транзистора на микроскопических расстояниях друг от друга.
Все перечисленные и многие другие качества транзисторов сделали их незаменимыми для техники. Именно транзисторы превратили ЭВМ из мастодонтов, редких и громоздких зверей, в существа, которые могли уже разместиться на письменном столе, они вскоре начали выпускаться серийно.
В 1973 году мир отмечал серебряный юбилей транзисторов. Ученые и популяризаторы науки и техники в пышных речах-статьях возглашали хвалу этому чудесному изобретению. Предлагалось, между прочим, срочно создать музей электроники, где можно было бы разместить и показать все образчики ЭВМ, все их поколения: на лампах – первое, на транзисторах – второе…
Увы, в те годы (а ведь с тех пор прошло не так-то уж много лет!) хвастать еще было особенно нечем. Если бы организаторы такого музея вознамерились, скажем, создать макет компьютера, равного по своим возможностям – хотя бы внешним! – человеческому мозгу, всем его миллиардам нейронов, заменив их даже не лампами, а транзисторами, им бы пришлось изрядно потрудиться. И прежде всего сильно задуматься о поисках места для такого экспоната. Хотя такая модель мозга не заняла бы, как в 50-е годы, территории, соизмеримой с размерами Нью-Йорка или Токио, все же и с полупроводниками она бы, как говорится, не влезла ни в какие ворота!
Создать компьютер с числом элементов, равным числу нервных клеток головного мозга человека, и чтоб он был способен разместиться в объеме черепной коробки? Фантастика? Да, но только для тех лет. В конце 80-х годов прошлого века это была уже вполне конкретная цель, которые стали ставить перед собой разработчики ЭВМ. И в этом деле все свои надежды они связывали уже со словами «интегральные схемы».
12.3. Как муха превратилась в слона
Существует англосаксонский вариант лесковского Левши. Будто бы некий мастер-виртуоз послал другому булавку, на ее головке он выгравировал слова: «Как тебе это нравится?». Последовал ответ: «Ничего особенного». Написано это было на той же булавке, но внутри буквы «о» в слове «это».
Эта притча невольно приходит на ум, когда вспоминаешь недолгую историю развития микроэлектроники. Череда поколений превратила ЭВМ в карликов, низвела их узлы до микробных размеров.
Вакуумные лампы сменили полупроводники-транзисторы. Переход к интегральным схемам (разработчики предпочли сокращение ИС) знаменовал приход третьего поколения ЭВМ. Это уже было истинно гравировальное искусство – размещать на крохотных (теперь они почти могут пройти сквозь игольное ушко) микрокристалликах кремния как можно больше транзисторов-деталей.
Собственно, тут-то и занялась заря эры микроэлектроники.
Начиная с 60-х годов прошлого века каждый год количество отдельных электронных элементов на чипе (так назвали западные специалисты микрокристаллы с нанесенными на них большими – БИС – и сверхбольшими – СБИС – интегральными схемами, они условно характеризуют четвертое поколение компьютеров) примерно удваивалось. И к концу века степень интеграции выросла до немыслимых пределов: до 105–106 элементов на одном чипе.
Специалисты считали, что подобные суперчипы дадут возможность вскоре воплотить все качества современного большого компьютера в одном устройстве размером со спичечную головку!
О фантастичности достижений технологов говорило то, что на кремниевой пластинке 5х5 миллиметров (клеточка арифметической тетради) удавалось выложить мозаику деталей, которых хватило бы для создания сотни телевизоров!
Темпы развития микроэлектроники потрясали. Английский ученый К. Эванс тогда подсчитал, что, если бы автомобилестроение развивалось так же, как микроэлектроника, то современный «роллс-ройс» стоил бы всего 1,35 фунта стерлингов, причем ему бы хватило четырех с половиной литров бензина на дорогу в 3 миллиона миль. Наконец, дюжина таких автомашин могла бы разместиться… на спичечной головке.
Так рассуждали люди ученые. Они привыкли иметь дело с цифрами. Те же, кто хотел бы представить себе компьютерное хозяйство планеты глазами наивного ребенка, заметили бы иное. Они отметили бы, что магия миниатюризации буквально превратила муху в слона.