Оператор, работающий с ЭВМ, может, остановив машину, узнать, что она в данный момент «думает» и «знает». Мысль машины (пока!) в человеческих руках. Но управлять в полной мере ни своей собственной, ни чужой психикой человек не в состоянии.
Стоит также отметить и то, что нейронные сети мозга, словно бы в пику вычислительным машинам, вообще не заняты никакими вычислениями. Вот, допустим, вратарь безошибочно ловит мяч, летящий в сетку ворот. С математической точки зрения, чтобы угадать место и момент падения мяча, необходимо решить некоторое дифференциальное – высшая математика! – уравнение. Но разве можно себе представить, что это уравнение «записано» в голове у вратаря и он решает его в считанные доли секунды?
Перечисление различий мозга и ЭВМ можно было бы продолжить. Они напрашиваются сами собой, когда ближе познакомишься с устройством мозга, этим сложнейшим электрохимическим производством, целым комбинатом цехов и лабораторий, создание которых природе удалось блестяще: ни клубов ядовитого дыма, ни загрязняющих среду вредных отходов тут нет.
И вот рядом с этим верхом совершенства, творением, повторить которое человеку никак не удается, мы видим нечто совсем другое – словно бы игрушку из гигантского детского набора, тьму простых деталей, соединенных по нехитрому, заранее заданному плану.
13.3. За световой барьер
Внешним наиболее заметным отличием ЭВМ от мозга является их сказочное быстродействие. Именно скорость обеспечила компьютерам все их преимущества. Это основа их могущества. И вся недолгая история вычислительной техники проходила под знаком борьбы за скорость. За какие-то два десятилетия быстродействие компьютеров возросло с нескольких тысяч до нескольких миллионов операций в секунду!
Поколения ЭВМ… Это не только стремление сделать компьютер миниатюрным и дешевым. Это и битва за скорость: чем компактней интегральная схема, тем короче пути надо преодолевать электронам, тем выше быстродействие. Но здесь перед разработчиками ЭВМ неожиданно возник барьер. Световой. Известно, что (во всяком случае, в нашей Вселенной) скорость любого сигнала не может быть выше скорости света. Гигантской величины – 30 000 000 000 сантиметров в секунду.
Сейчас тактовая частота элементов ЭВМ что-то около 10 Мгц (107 герц, элементарных «движений», которые за секунду способен совершать компьютер). Большая величина, но ее хотелось бы увеличить хотя бы раз в сто (заветные для разработчиков ЭВМ миллиарды операций в секунду). Что этому мешает? Малость скорости света!
За ничтожные миллиардные доли секунды даже световой сигнал (электроны движутся в 1,5–3 раза медленнее) успевает пробежать небольшой путь – всего (легко подсчитать) 10–20 сантиметров. А если расстояния между отдельными блоками компьютера – метры? Да еще при этом каждая команда должна быть повторена много раз?..
Вот это и есть световой барьер. Кажется, что природа воздвигла совершенно непреодолимую преграду, высоченную стену, проникнуть за которую никогда не удастся: ведь изменить скорость света не в нашей власти. Так скорость света из гиганта словно бы превратилась в карлика. Так перед конструкторами компьютеров встала новая проблема.
Впрочем, такая ситуация для техники не редкость. Обычное дело. Сначала развитие какой-то области идет гладко и быстро, без сучка и задоринки. Но так продолжается лишь до определенного времени. Затем на горизонте, как редкие тучи, возникают первые трудности – успехи становятся не столь весомыми, шаги замедляются, темпы падают, приходится тратить все больше сил для продвижения вперед. Вот оно и совсем остановилось… Однако наука не стоит на месте. И вдруг – о, чудо! – ученые дают в руки инженерам волшебные средства, появляется новый взгляд на вещи, и вновь открываются неоглядные дали для прогресса.
Ну а если привести конкретный пример из истории техники, то турбореактивные двигатели и стреловидное крыло в свое время позволили самолетам преодолеть звуковой барьер, дали им возможность летать со скоростями выше скорости звука (больше 300 метров в секунду).
13.4. ЭВМ вместо аэродинамической трубы
Быстродействие ЭВМ крайне необходимо для управления самолетами, судами, технологическими процессами, станками, боевыми операциями, ракетами. Компьютеры тут обязаны работать с опережением идущих процессов, работать, подстраиваясь под человека, в реальном масштабе времени.
Сверхскорости нужны ЭВМ и при расчете сложных объектов: ядерных реакторов, крупных электростанций, новых конструкций самолетов.
Как рассчитывались авиалайнеры прежде, по старинке? На каждом квадратном сантиметре поверхности самолета надо было устанавливать один-два датчика с проволочными ответвлениями в электронный мозг машины, которая выдавала окончательные ответы через неделю.