Another revealing example of selection bias was the reanalysis of a study begun in 1957 on fifty-four hundred male employees of the Western Electric Company. The original investigators, led by the Chicago cardiologist Oglesby Paul, had given them extensive physical exams and come to what they called a “reasonable approximation of the truth” of what and how much each of these men ate. After four years, eighty-eight of the men had developed symptoms of coronary heart disease. Paul and his colleagues then compared heart disease rates among the 15 percent of the men who seemingly ate the most fatty food with the 15 percent who seemingly ate the least. “Worthy of comment,” they reported, “is the fact that of the 88 coronary cases, 14 have appeared in the high-fat intake group and 16 in the low-fat group.”
Two decades later, Jeremiah Stamler and his colleague Richard Shekelle from Rush–Presbyterian–St. Luke’s Medical Center in Chicago revisited Western Electric to see how these men had fared. They assessed the health of the employees, or the cause of death of those who had died, and then considered the diets each subject had reportedly consumed in the late 1950s. Those who had reportedly eaten large amounts of polyunsaturated fats, according to this new analysis, had slightly lower rates of coronary heart disease, but “the amount of saturated fatty acids in the diet was not significantly associated with the risk of death from [coronary heart disease],” they reported. This alone could be considered a refutation of Keys’s hypothesis.
But Stamler and Shekelle knew what result they
In preventive medicine, benefits without risks are nonexistent. Any diet or lifestyle intervention can have harmful effects. Changing the composition of the fats we eat could have profound physiological effects throughout the body. Our brains, for instance, are 70 percent fat, mostly in the form of a substance known as myelin that insulates nerve cells and, for that matter, all nerve endings in the body. Fat is the primary component of all cell membranes. Changing the proportion of saturated to unsaturated fats in the diet, as proponents of Keys’s hypothesis recommended, might well change the composition of the fats in the cell membranes. This could alter the permeability of cell membranes, which determines how easily they transport, among other things, blood sugar, proteins, hormones, bacteria, viruses, and tumor-causing agents into and out of the cell. The relative saturation of these membrane fats could affect the aging of cells and the likelihood that blood cells will clot in vessels and cause heart attacks.