Читаем Горизонты науки Башкортостана (сборник) полностью

Греческое слово «нанос» означает «гном», им обозначают миллиардные части целого. Нанотехнологии – область прикладной науки и техники, занимающаяся изучением свойств объектов и разработкой устройств размеров порядка нанометра (по системе единиц СИ, 10−9 метра).

Историк науки Ричард Букер отмечает, что историю нанотехнологии создать сложно из-за неопределенности самого этого понятия. Чарльз Пул, автор книги «Введение в нанотехнологию», приводит такой пример: в Британском музее хранится так называемый «Кубок Ликурга», изготовленный древнеримскими мастерами, – он содержит микроскопические частицы золота и серебра, добавленные в стекло. При различном освещении кубок меняет цвет – от темно-красного до светло-золотистого. Но это не означает, что в Риме была использована нанотехнология.

Обычные и нанотехнологии

Вещество может иметь качественно новые физические и химические свойства, если оно очень мелко раздроблено. Частицы размерами от 1 до 1000 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства: например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Уже сегодня ученым удалось добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров – рибосомами, белками, нуклеиновыми кислотами… Наночастицы могут организовываться в пространственные структуры. Такие структуры также проявляют необычные химические и физические свойства.

Нанотехнологии качественно отличаются от традиционных инженерных дисциплин, потому что это технологии микромира, или пограничной области между нашим и квантовым миром. Обычные технологии металлов, химические технологии в таких масштабах совершенно изменяются. Очень сильно начинают проявляться квантовые свойства вещества. Это дает возможность разработки таких устройств, как молекулярные машины, нанороботы, квантовые компьютеры, молекулярные компьютеры и прочее.

Нанотехнологии и современный мир

Уже к 2004 году мировые инвестиции в сферу разработки нанотехнологий почти удвоились по сравнению с 2003 годом и достигли $10 млрд. Мировыми лидерами по общему объему капиталовложений в этой сфере стали Япония и США. На долю США ныне приходится примерно треть всех мировых инвестиций в нанотехнологии. Много в этой области работают Европейский Союз, Япония, Канада, Китай, Южная Корея, Израиль, Сингапур, Бразилия и другие государства. В США одни только федеральные ассигнования на нанотехнологические программы и проекты выросли с $464 млн. в 2001 году до $1 млрд. в 2005-м. В 2006 году США выдели на эти цели дополнительно $1,1 млрд. Еще $4 млрд. в 2006 году потратили на те же цели американские корпорации. На Западе нанолаборатории создают гиганты большого бизнеса – например, General Electric, IBM, Bell, BASF, крупные университеты. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 10 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, приблизится к $1 трлн.

Начало

В 1931 году немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты. В 1968 году Альфред Чо и Джон Артур разработали теоретические основы нанотехнологии при обработке поверхностей. В 1974 году японский физик Норио Танигучи ввел слово «нанотехнологии», которым предложил называть малые устройства, размером один микрон и меньше. В 1981 году германские физики Герд Бинниг и Генрих Рорер создали микроскоп, способный различать атомы. В 1985 году американские физики Роберт Керл, Хэрольд Крото и Ричард Смэйли создали с помощью электронной микроскопии технологию, позволяющую точно измерять предметы диаметром нанометр, появились манипуляторы для работы с такими объектами. В 1989 году Дональд Эйглер, инженер фирмы IBM, выложил название своей фирмы атомами ксенона. В 1998 году появились первые наноустройства. Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.

Где используются наноматериалы?

В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, композиционных материалов, спортивного оборудования и инвентаря, военного снаряжения, транзисторов и диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки, косметики и одежды. В 2002 году на Кубке Дэвиса были впервые использованы теннисные мячи, созданные с использованием нанотехнологий. В общей сложности в США и на Западе сейчас применяют нанотехнологии при производстве около 100 групп потребительских товаров и свыше 1000 видов материалов различного назначения.

Нанокирпичики

Перейти на страницу:

Похожие книги

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература