Теорема Виета позволяет быстро находить решения квадратных уравнений, не прибегая к вычислениям с использованием дискриминанта, однако учебно-методических материалов для отработки навыков поиска корней по формуле Виета имеется крайне мало. Данное пособие призвано хотя бы частично устранить этот дефицит и содержит 600 готовых примеров квадратных уравнений с целыми корнями, а также ответы на эти примеры для проверки и самоконтроля. Пособие предназначено для учителей математики, школьников и их родителей.
Учебная и научная литература / Образование и наука18+Дмитрий Усенков
Готовые дидактические материалы для тренировки устного счета: теорема Виета. 600 примеров
Предисловие
Теорема Виета, сформулированная французским математиком Франсуа Виетом, дает возможность в отдельных случаях (для целых и, иногда, для дробных значений корней) быстро находить решения квадратных уравнений, не прибегая к вычислениям с использованием дискриминанта. В школьной алгебре теорема Виета (формула Виета) играет такую же ведущую роль, как и теорема Пифагора в геометрии, однако учебно-методических материалов для отработки навыков поиска корней по формуле Виета имеется крайне мало.
Данное пособие призвано хотя бы частично устранить этот дефицит и содержит 600 готовых примеров квадратных уравнений с целыми корнями, а также ответы на эти примеры для проверки и самоконтроля.
При использовании в классно-урочной форме работы учитель может использовать текст пособия в качестве готового раздаточного материала, а после выполнения работы учащимися произвести проверку по имеющимся готовым ответам.
При использовании пособия для самостоятельной подготовки вы можете использовать ответы для самопроверки после решения выбранных примеров.
Ответы записаны в форме разложения квадратного уравнения на множители; если требуется получить значения самих корней, то нужно константные слагаемые в скобках брать с противоположными знаками.
Примечание. При использовании формулы Виета дискриминант квадратного уравнения должен быть неотрицательным. В случае, если дискриминант равен нулю, считается, что данное уравнение имеет
Теорема Виета (краткие теоретические сведения)
Формулировка теоремы Виета:
Сумма корней
Таким образом, если уравнение
Согласно этим равенствам, для получения решения квадратного уравнения необходимо подбором найти два числа, сумма которых равна коэффициенту при
Доказательство теоремы Виета
Докажем теорему Виета.
Формулы для вычисления корней квадратного уравнения (рассматривается ситуация, когда дискриминант D положителен; уравнение с нулевым дискриминантом можно считать частным случаем):
Вычислим сумму этих корней:
Раскрыв скобки и сократив слагаемые, получаем:
.
Вычислим произведение корней:
Применив в числителе формулу разности квадратов, получаем:
Подставляем известную нам формулу для вычисления дискриминанта:
Получаем:
Таким образом, оба равенства теоремы Виета доказаны.
Обратная теорема Виета
Формулировка обратной теоремы Виета:
Если числа
Доказательство обратной теоремы Виета читатели могут произвести самостоятельно.
Задания для самостоятельного решения
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.