К великому сожалению, физики не знают, из чего сделан фотон. Они думают, что фотон должен быть легче элементарной частицы типа электрона. Но мы, в своей философии, утверждаем о том, что элементарные электромагнитные кванты, из которых сделан любой фотон (чего физики не знают), имеют ньютонову массу точь-в-точь такую же, какая она у электрона. И поэтому, в этом смысле, мы утверждаем: именно электрон имеет перед фотоном гигантское преимущество. Школьник уже догадался – какое. Правильно: фотон всегда движется с очень высокой скоростью – со скоростью света. Его нельзя замедлить. А если и можно будет это сделать в будущем, то для этого надо прилагать много энергии, сам факт применения которой делает неудобным способ замедления фотона. Но электрон физики могут замедлять чуть ли не до нулевой скорости (а вернее – именно до «нулевой») и замедлять хоть сейчас. Можно, например (почти запросто), замедлить электрон в миллион раз по отношению к фотону:
Это – фактически скорость звука (340
Но почему же физики не говорят об электроне, как о возможном кандидате на главный элемент гравитационного детектора? Потому что они не знают, что такое фотон. Поэтому не знают, чем он хорош, и чем он плох.
Зачем нам нужна труба-цилиндр? Она служит лишь усилителем
отклонения электрона, испущенного из какого-то самого простейшего линейного ускорителя (ускорителя до малой скорости 300 м/сек). В зависимости от того, каким гравитационным полем мы будем «освещать» трубу-цилиндр, соответствующим будет и поведение (отклонение) электрона.Оценим преимущество использования в качестве «гравитационного детектора» – медленного электрона перед быстрым квантом лазерного луча. Итак, для электрона, замедленного до скорости 300 м/сек, его инерционность, как инерционность не релятивистской, то есть, низко-скоростной частицы, будет определяться параметром – «количество движения»:
Для единичного же кванта, из множества которых состоит лазерный луч, этот параметр равен:
То есть луч лазера в
Оценим теперь инерционность единичного гравитационного кванта:
Мы видим, что маленький единичный гравитационный квант на 2 порядка более инерционен, чем квант луча лазера и на 8 порядков более инерционен, чем медленный электрон. Поэтому с точки зрения получения хорошей эффективности отклонения направленной
гравитацией единичного элемента измерительного «гравитационного детектора», эту гравитацию остаётся только грамотно направить в нужное время в нужное место. А учитывая тот фактор, что плотность гравитационного вакуумаПоскольку с кандидатом на роль главного элемента гравитационного детектора мы уже чётко определились (это – медленный электрон), то подумаем о том, каким должен быть гравитационный приёмник. Этих приёмников можно разработать великое множество – самых разных. Всё зависит от того, на какой гравитационный сигнал должен быть «настроен» этот приёмник. А этих «сигналов» тоже может быть великое множество. Всё зависит от того, какой объект мы выберем в качестве гравитационного передатчика или какой гравитационный передатчик создадим сами. При этом мы абсолютно уверены в том, что здесь не только физиков, но студентов и школьников будет ожидать гигантский простор для выбора ими тех или иных конструкций
– как приёмников, так и передатчиков. Всем им надо только немного подсказать философией (в особенности – подсказать зацикленным на ОТО физикам).