Читаем Гравитация. От хрустальных сфер до кротовых нор полностью

Величина va (набор значений) с одним индексом называется тензором 1-го ранга. Поле скаляра, в отличие от вектора, в каждой точке пространства, независимо от его размерности, имеет одну компоненту (функцию от пространственных координат) и записывается как величина без индексов, скажем, v. Скаляр, как величина без значков, является тензором нулевого ранга. В тексте очень часто встречается понятие метрического тензора gab, который и описывает гравитационное поле. Теперь, имея представление о векторе и скаляре, как о тензорах, смело можно говорить, что метрика – это тензор 2-го ранга и все его компоненты объединены в матрицу. В 4-мерном пространстве-времени это выглядит так:

В силу симметрии gab = gba независимых компонент из 16-ти остается 10. Поле метрического тензора задано, если в каждой точке пространства-времени задано 10 функций, представляющих эту матрицу. Аналогичные рассуждения справедливы для других тензоров второго ранга. Если бы мы хотели рассмотреть какой-нибудь тензор 3-го ранга, мы должны были представить величину с 3-мя индексами, а ей сопоставить 3-мерную матрицу (куб). Важно отметить, что все тензоры обладают общим свойством: при преобразованиях координат они преобразуются по специальному тензорному закону, сохраняя свою прежнюю структуру. Нетензорные величины при преобразованиях координат обычно приобретают дополнительные (по отношение к тензорным) слагаемые.

<p>2. Материальные источники</p>

В тексте обсуждается и утверждается, что искривление пространства-времени – это результат воздействия материальных источников. Что они собой представляют и как представлены формально? Эти источники являются материей в самом общем понимании. Они включают в себя все вещество, которое может быть сосредоточено в отдельных телах или распределено дисперсно, и все возможные поля, как статические, так и поля излучения. Обсуждая специальную теорию относительности, мы уже отметили, что энергию и импульс в релятивистской теории нельзя рассматривать отдельно, а правильно рассматривать 4-мерный вектор энергии-импульса, скажем, материальной частицы. Но оказывается, что в искривление пространства-времени свой вклад вносят и другие характеристики материи, такие как напряжения внутри тел, давление Все вместе они образуют тензор энергии-импульса материи Tab.

Далее нам необходимо вспомнить об уравнении непрерывности. Суть его в том, что изменения со временем плотности вещества в данной точке равно скорости притока и оттока со всех сторон. Это один из законов сохранения, иначе его называют уравнением баланса, и он является следствием уравнений движения для вещества. Обобщение этого закона для всего тензора энергии-импульса в искривленном пространстве-времени означает, что он также должен удовлетворять закону сохранения.

<p>3. Построение уравнений Эйнштейна</p>

Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства-времени. При этом пространство-время искривляется под воздействием материи, которая, в свою очередь, движется в этом искривленном собой пространстве-времени. Это и есть логическая основа для построения уравнений общей теории относительности. Но как их построить правильно?

Логика очевидна: нужно связать тензор энергии-импульса материи с кривизной пространства-времени. Самый простой и очевидный способ: отнести Tab в правую часть уравнений, а левую определить как некую комбинацию компонент тензора кривизны. Но как это сделать? Дело в том, что все уравнения вместе (гравитационные уравнения и уравнения для материи) должны быть совместны, иначе не будет существовать решений. Но как мы уже отметили, анализ уравнений материи в искривленном пространстве-времени приводит к выводу, что тензор энергии-импульса материи должен удовлетворять закону сохранения (непрерывности). Но тогда, чтобы все уравнения были совместны, нужно найти такую комбинацию из величин, связанных с кривизной, и которую мы собираемся написать в левой части уравнений, чтобы она тождественно удовлетворяла такому же закону сохранения. Такая комбинация была найдена – это так называемый тензор Эйнштейна Gab, построенный из компонент тензора Римана, а в конечном итоге зависящий от метрического тензора. Тогда уравнения для гравитационного поля записываются в виде:

Gab = Tab.

Здесь – постоянная Эйнштейна, которая выражается через ньютонову гравитационную постоянную G и скорость света c: = 8G/c4. Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании сображений, изложенных выше. Практически одновременно они были представлены немецкими математиком Давидом Гильбертом.

<p>4. Решение уравнений Эйнштейна</p>
Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука