Читаем Гравитация. От хрустальных сфер до кротовых нор полностью

Истинное время наблюдателя на бесконечности (где, по сути, пространство-время плоское) совпадает с координатным временем t. Для геометрии Шварцшильда истинное время в каждой конкретной точке представляется выражением = t(g00)1/2 = t(1 – rg/r)1/2. Эта формула показывает, каким будет наблюдаться ход часов, помещенных в точке с радиальной координатой r удаленным наблюдателем (наблюдателем на бесконечности). То есть с его точки зрения часы, которые ближе к центру (с меньшими значениями r) идут медленнее тех, которые дальше от центра. Это, конечно, относится не только к часам, а ко всем наблюдаемым процессам. Если бы удаленный наблюдатель увидел часы в точке r = rg, то он бы констатировал, что и часы стоят, и все остальные процессы застыли! Поскольку эффект гравитационного красного смещения прямо связан с эффектом замедления времени, то чем ближе к сфере радиуса rg, тем эффект «покраснения» сильнее. Если бы удаленный наблюдатель попытался увидеть сигнал, испущенный из точки r = rg, то он бы обнаружил, что его частота нулевая.

<p>Горизонт событий и истинная сингулярность</p>

Нулевая частота означает, что нет никакого сигнала вообще! Из-под сферы радиуса rg световые сигналы не выходят, гравитационные силы не дают им вырваться во внешнюю окрестность. То есть, действительно, это сфера, где вторая космическая скорость становится равной скорости света. Поэтому из-под сферы радиуса rg невозможно распространение наружу никакой формы материи. Таким образом, эта сфера оказывается барьером, за который внешний наблюдатель не в состоянии заглянуть. Именно поэтому она получила удачное название горизонта событий, а сам объект стали называть черной дырой.

Термин черная дыра подсказал известному американскому физику-теоретику Джону Уилеру (1911–2008) один из студентов на конференции в 1967 году. Но еще ранее, в 1964 году, его использовала Анна Ивинг в докладе на собрании Американской ассоциации содействия науке.

До сих пор мы рассматривали фиксированные точки пространства и наблюдателей, связанных с ними. Теперь давайте проследим за свободно падающим телом. Пусть падение начинается из состояния покоя из удаленной области, где почти нет искривления, откуда мы будем отслеживать его траекторию. В восприятии удаленного наблюдателя история падения будет следующей. Сначала движение не будет вызывать удивления. Скорость будет нарастать медленно, затем все быстрее и быстрее, вполне соответствуя закону всемирного тяготения. Затем, на расстояниях от центра, сравнимых с гравитационным радиусом, нарастание скорости падения станет катастрофическим. Здесь мы тоже не очень удивимся, мы объясним это тем, что из зоны соответствия с гравитацией Ньютона объект попал в зону сильных искривлений. А на расстояниях долей гравитационного радиуса от горизонта событий он, к нашему изумлению, начнет резко тормозить и все медленней приближаться к горизонту событий, а в результате, никогда его не достигнет. Но здесь тоже нечего удивляться, недавно мы установили, что для удаленного наблюдателя все процессы при приближении к горизонту событий замирают, падение тела – не исключение.

Эффект того, что из-под горизонта событий ничего не выходит наружу, мы объяснили наличием чрезвычайно сильного гравитационного воздействия. Этот ответ, конечно, правильный, поскольку ничего, кроме гравитации, не рассматривается. Однако он не конструктивный, так как не позволяет понять механизм тех явлений, о которых мы только что говорили. Нет никакого представления о том, что происходит под горизонтом, и происходит ли вообще что-то. С другой стороны, мы договорились, что в эйнштейновской теории гравитационных сил, как таковых, нет вообще. Есть искривление пространства-времени. Поэтому, давайте, шаг за шагом перейдем к описанию в рамках геометрической теории.

Мы уже убедились, что в СТО использование светового конуса помогает понять многие явления. В ОТО, в искривленном пространстве-времени, имеет больший смысл представлять его не на всей диаграмме, а в окрестности каждой мировой точки. Это будет локальный световой конус, образованный касательными к световым геодезическим в данной точке. Уравнение светового конуса имеет простой вид – интервал приравнивается нулю: ds = 0.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука