Другой пример ближе к жизни, и мы рассмотрим его подробнее. Пусть две звезды одинаковой массы
Рис. 10.3. Модель двух звезд
Начальное состояние соответствует
Конечно, и такая система должна излучать. Поскольку движение обусловлено гравитационным взаимодействием, то и
Система излучает тем интенсивнее, чем меньше
Чтобы проиллюстрировать насколько мало гравитационное излучение, приведем следующий пример. В Солнечной системе, наибольшая мощность гравитационного излучения возникает в паре Солнце + Юпитер. Это излучение можно рассчитать по аналогичной формуле. В результате получим примерно 5 кВт (это всего лишь мощность пяти больших бытовых кипятильников советских времен). Энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с кинетической энергией этих тел.
Необходимо сказать несколько слов о направленности гравитационного излучения. В случае с грузами на пружинке по ее оси вообще нет излучения, а максимум – в направлении перпендикулярном пружинке. В случае кругового движения интенсивность излучения в направлении перпендикулярном плоскости орбиты в несколько раз больше, чем в направлениях, лежащих в плоскости. Связаны эти особенности с тем, что излучаемая гравитационная волна является поперечной.
Источники гравитационного излучения
– Возьмем две звезды, разгоним почти до скорости света и столкнем. Что произойдет?
– Нехилый коллайдер получится…
Слабость гравитационного излучения оставляет мало шансов для его регистрации. Где же искать подходящие источники? Наш соотечественник, замечательный физик-теоретик Владимир Фок (1898–1974), рис. 10.4, был первым, кто в 1948 году обратил внимание на возможность детектирования гравитационного излучения, возникающего при астрофизических катастрофах. Детальный анализ позволяет сделать вывод, что наиболее перспективными источниками гравитационных волн будут компактные объекты, размеры которых сравнимы с гравитационным радиусом, а скорости сравнимы со скоростью света. Согласно расчетам, при слиянии двух нейтронных звезд излучается около 1045 Дж в виде всплеска гравитационного излучения, т. е. около 1 % от их полной энергии.
Теперь подробнее о космических источниках.
Такие экстремальные физические условия могут сопутствовать рождению нейтронных звезд или черных дыр во время коллапсов ядер массивных звезд. Эту модель эволюции звезд мы вкратце рассмотрели выше. Невозможно дать надежный расчет этого процесса, хотя и можно ожидать значительной несферичности коллапса. Современная приблизительная оценка энергии, излученной в виде гравитационных волн за время коллапса, – 10–9–10–3
Но чувствительность детекторов (о них будем говорить далее) возрастает, а значит и область пространства, доступная для наблюдений таких событий, тоже увеличивается, охватывая и соседние галактики. В результате вероятность регистрации событий становится все больше. Однако теоретически остается очень большая неопределенность в расчете параметров выделяемой энергии в виде гравитационных волн. Это не дает основания считать сверхновые оптимальными источниками для обнаружения гравитационных волн на современных детекторах.
Рис. 10.4. Владимир Фок