Читаем Гравитация. От хрустальных сфер до кротовых нор полностью

Эйнштейн, интерпретируя нелокализуемость плотности энергии гравитационного поля, отстаивал точку зрения, что это не недостаток теории, а особое свойство такого поля. Для простых моделей были рассмотрены возможные способы «локализации» гравитационной энергии. Так, рассматривая островную (изолированную) систему, Эйнштейн предложил следующее: «Чтобы можно было говорить об энергии или импульсе системы, плотности энергии и импульса должны обращаться в нуль вне некоторой области B. Это будет только тогда, когда вне области B компоненты метрики постоянны, то есть когда рассматриваемая система как бы погружена в «галилеевское пространство», и мы пользуемся «галилеевскими координатами» для описания окружения системы». В данном случае «галилеевское пространство» играет роль пространства Минковского, относительно которого сохраняющиеся величины в СТО определяются однозначно. В СТО, однако, можно однозначно определить и плотности, а здесь только полные характеристики всей системы, поскольку «галилеевское пространство» определено только в окрестностях системы.

<p>Локализация сохраняющихся величин в ОТО</p>

Слабые гравитационные волны были представлены как метрические возмущения, распространяющиеся в плоском пространстве-времени. Это означает, что вводится некоторое «опорное» фиксированное пространство Минковского. Но его фактически нет в ОТО как теории с динамической метрикой! Но такова постановка задачи: изучение (1) слабых метрических возмущений (2) в плоском пространстве-времени. И (1), и (2) – это ограничения, определенные постановкой задачи, которые в данном случае вводятся везде, во всем физическом пространстве-времени. Эти ограничения позволяют рассматривать только линейные возмущения в пространстве Минковского. Такое исследование принципиально не отличается от исследования электродинамики в пространстве Минковского. У линейного гравитационного поля исключаются нефизические степени свободы, аналогично тому, как это делается в электродинамике.

А в итоге получается, что для системы слабых гравитационных волн (этой конкретной задачи) локальные сохраняющиеся величины (плотности энергии, импульса, и т. д.) определяются вполне однозначно.

Опорное, или фоновое, пространство-время не обязательно должно быть плоским, оно обычно определяется характером конкретных моделей или задач. Так, например, для реальных гравитационных волн естественно выбрать в качестве фона пространство-время какого-либо космологического решения. Конкретный выбор фона является одним из ограничений, которое позволяет корректно говорить о локализации. Гравитационные волны, в силу теории, должны переносить положительную энергию. Именно на этом основан метод детектирования, который заключается в том, что под их воздействием должны смещаться зеркала в интерферометрах. Кроме того, это уже, хотя и косвенно, подтверждено наблюдениями. Для некоторых двойных систем достоверно известно, что их компоненты сближаются. Это означает, что их отрицательная энергия связи по абсолютной величине становится больше, т. е. с гравитационными волнами происходит отток положительной энергии.

В отношении эйнштейновского примера с изолированной системой можно сказать, что также вводится некоторое «опорное» фиксированное пространство Минковского, но не везде, а в очень удаленной окрестности системы. В этом случае также удается локализовать сохраняющиеся величины, то есть определить глобальные (полные для всей системы) сохраняющиеся величины. Таким образом, можно определить энергию, импульс и т. д. всего, что «внутри», рассматривая энергию гравитационного поля вместе со всей материей.

Основываясь на этом принципе, можно определить энергию, скажем, черной дыры Шварцшильда. Удаляясь от центра, попадаем в почти плоскую область, где возмущения метрики очень слабые. Теперь их можно рассматривать как самостоятельное поле в пространстве Минковского. Характер убывания возмущений позволяет рассчитать полную энергию, которая заключена под сферой, определенной положением наблюдателя. В пределе, на бесконечности получим полную энергию всей системы. Для черной дыры Шварцшильда – это mc2, где m – параметр массы в решении.

В силу сложности определения сохраняющихся величин в ОТО, существует множество методов их построения, среди них встречаются ошибочные, противоречащие некоторым фундаментальным требованиям. Расчет полной энергии черной дыры является одним из тестов на удовлетворение этим требованиям.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука