370 " GUNS, GERMS, AND STEELon groupings of Native American languages reflect the difficulties that complex Native American societies themselves faced in expanding within the New World. Had any food-producing Native American peoples succeeded in spreading far with their crops and livestock and rapidly replacing hunter-gatherers over a large area, they would have left legacies of easily recognized language families, as in Eurasia, and the relationships of Native American languages would not be so controversial.Thus, we have identified three sets of ultimate factors that tipped the advantage to European invaders of the Americas: Eurasia's long head start on human settlement; its more effective food production, resulting from greater availability of domesticable wild plants and especially of animals; and its less formidable geographic and ecological barriers to intracontinen-tal diffusion. A fourth, more speculative ultimate factor is suggested by some puzzling non-inventions in the Americas: the non-inventions of writing and wheels in complex Andean societies, despite a time depth of those societies approximately equal to that of complex Mesoamerican societies that did make those inventions; and wheels' confinement to toys and their eventual disappearance in Mesoamerica, where they could presumably have been useful in human-powered wheelbarrows, as in China. These puzzles remind one of equally puzzling non-inventions, or else disappearances of inventions, in small isolated societies, including Aboriginal Tasmania, Aboriginal Australia, Japan, Polynesian islands, and the American Arctic. Of course, the Americas in aggregate are anything but small: their combined area is fully 76 percent that of Eurasia, and their human population as of a.d. 1492 was probably also a large fraction of Eurasia's. But the Americas, as we have seen, are broken up into "islands" of societies with tenuous connections to each other. Perhaps the histories of Native American wheels and writing exemplify the principles illustrated in a more extreme form by true island societies.after at least 13,000 years of separate developments, advanced American and Eurasian societies finally collided within the last thousand years. Until then, the sole contacts between human societies of the Old and the New Worlds had involved the hunter-gatherers on opposite sides of the Bering Strait.There were no Native American attempts to colonize Eurasia, except at the Bering Strait, where a small population of Inuit (Eskimos) derived fromHEMISPHERESCOLLIDING " 3 7 IAlaska established itself across the strait on the opposite Siberian coast. The first documented Eurasian attempt to colonize the Americas was by the Norse at Arctic and sub-Arctic latitudes (Figure 18.1). Norse from Norway colonized Iceland in a.d. 874, then Norse from Iceland colonized Greenland in a.d. 986, and finally Norse from Greenland repeatedly visited the northeastern coast of North America between about a.d. 1000 and 1350. The sole Norse archaeological site discovered in the Americas is on Newfoundland, possibly the region described as Vinland in Norse sagas, but these also mention landings evidently farther north, on the coasts of Labrador and Baffin Island.Iceland's climate permitted herding and extremely limited agriculture, and its area was sufficient to support a Norse-derived population that has persisted to this day. But most of Greenland is covered by an ice cap, and even the two most favorable coastal fjords were marginal for Norse food producrion. The Greenland Norse population never exceeded a few thousand. It remained dependent on imports of food and iron from Norway, and of timber from the Labrador coast. Unlike Easter Island and otherFigure 18.1. The Norse expansion from Norway across the North Atlantic, with dates or approximate dates when each area was reached.372– " GUNS, GERMS, AND STEELremote Polynesian islands, Greenland could not support a self-sufficient food-producing society, though it did support self-sufficient Inuit hunter-gatherer populations before, during, and after the Norse occupation period. The populations of Iceland and Norway themselves were too small and too poor for them to continue their support of the Greenland Norse population.In the Little Ice Age that began in the 13th century, the cooling of the North Atlantic made food production in Greenland, and Norse voyaging to Greenland from Norway or Iceland, even more marginal than before. The Greenlanders' last known contact with Europeans came in 1410 with an Icelandic ship that arrived after being blown off course. When Europeans finally began again to visit Greenland in 1577, its Norse colony no longer existed, having evidently disappeared without any record during the 15th century.But the coast of North America lay effectively beyond the reach of ships sailing directly from Norway itself, given Norse ship technology of the period a.d. 986-1410. The Norse visits were instead launched from the Greenland colony, separated from North America only by the 200-mile width of Davis Strait. However, the prospect of that tiny marginal colony's sustaining an exploration, conquest, and settlement of the Americas was nil. Even the sole Norse site located on Newfoundland apparently represents no more than a winter camp occupied by a few dozen people for a few years. The Norse sagas describe attacks on their Vinland camp by people termed Skraelings, evidently either Newfoundland Indians or Dorset Eskimos.The fate of the Greenland colony, medieval Europe's most remote outpost, remains one of archaeology's romantic mysteries. Did the last Greenland Norse starve to death, attempt to sail off, intermarry with Eskimos, or succumb to disease or Eskimo arrows? While those questions of proximate cause remain unanswered, the ultimate reasons why Norse colonization of Greenland and America failed are abundantly clear. It failed because the source (Norway), the targets (Greenland and Newfoundland), and the time (a.d. 984-1410) guaranteed that Europe's potential advantages of food production, technology, and political organization could not be applied effectively. At latitudes too high for much food production, the iron tools of a few Norse, weakly supported by one of Europe's poorer states, were no match for the stone, bone, and wooden tools of EskimoHEMISPHERESCOLLIDING • 373Indian hunter-gatherers, the world's greatest masters of Arctic survival skills.the second eurasian attempt to colonize the Americas succeeded because it involved a source, target, latitude, and time that allowed Europe's potential advantages to be exerted effectively. Spain, unlike Norway was rich and populous enough to support exploration and subsidize colonies. Spanish landfalls in the Americas were at subtropical latitudes highly suitable for food production, based at first mostly on Native American crops but also on Eurasian domestic animals, especially cattle and horses. Spain's transatlantic colonial enterprise began in 1492, at the end of a century of rapid development of European oceangoing ship technology, which by then incorporated advances in navigation, sails, and ship design developed by Old World societies (Islam, India, China, and Indonesia) in the Indian Ocean. As a result, ships built and manned in Spain itself were able to sail to the West Indies; there was nothing equivalent to the Greenland bottleneck that had throttled Norse colonization. Spain's New World colonies were soon joined by those of half a dozen other European states.The first European settlements in the Americas, beginning with the one founded by Columbus in 1492, were in the West Indies. The island Indians, whose estimated population at the time of their "discovery" exceeded a million, were rapidly exterminated on most islands by disease, dispossession, enslavement, warfare, and casual murder. Around 1508 the first colony was founded on the American mainland, at the Isthmus of Panama. Conquest of the two large mainland empires, those of the Aztecs and Incas, followed in 1519-1520 and 1532-1533, respectively. In both conquests European-transmitted epidemics (probably smallpox) made major contributions, by killing the emperors themselves, as well as a large fraction of the population. The overwhelming military superiority of even tiny numbers of mounted Spaniards, together with their political skills at exploiting divisions within the native population, did the rest. European conquest of the remaining native states of Central America and northern South America followed during the 16th and 17th centuries.As for the most advanced native societies of North America, those of the U.S. Southeast and the Mississippi River system, their destruction was374" GUNS, GERMS, AND STEELaccomplished largely by germs alone, introduced by early European explorers and advancing ahead of them. As Europeans spread throughout the Americas, many other native societies, such as the Mandans of the Great Plains and the Sadlermiut Eskimos of the Arctic, were also wiped out by disease, without need for military action. Populous native societies not thereby eliminated were destroyed in the same way the Aztecs and Incas had been—by full-scale wars, increasingly waged by professional European soldiers and their native allies. Those soldiers were backed by the political organizations initially of the European mother countries, then of the European colonial governments in the New World, and finally of the independent neo-European states that succeeded the colonial governments.Smaller native societies were destroyed more casually, by small-scale raids and murders carried out by private citizens. For instance, California's native hunter-gatherers initially numbered about 200,000 in aggregate, but they were splintered among a hundred tribelets, none of which required a war to be defeated. Most of those tribelets were killed off or dispossessed during or soon after the California gold rush of 1848-52, when large numbers of immigrants flooded the state. As one example, the Yahi tribelet of northern California, numbering about 2,000 and lacking firearms, was destroyed in four raids by armed white settlers: a dawn raid on a Yahi village carried out by 17 settlers on August 6, 1865; a massacre of Yahis surprised in a ravine in 1866; a massacre of 33 Yahis tracked to a cave around 1867; and a final massacre of about 30 Yahis trapped in another cave by 4 cowboys around 1868. Many Amazonian Indian groups were similarly eliminated by private settlers during the rubber boom of the late 19th and early 20th centuries. The final stages of the conquest are being played out in the present decade, as the Yanomamo and other Amazonian Indian societies that remain independent are succumbing to disease, being murdered by miners, or being brought under control by missionaries or government agencies.The end result has been the elimination of populous Native American societies from most temperate areas suitable for European food production and physiology. In North America those that survived as sizable intact communities now live mostly on reservations or other lands considered undesirable for European food production and mining, such as the Arctic and arid areas of the U.S. West. Native Americans in many tropical areas have been replaced by immigrants from the Old World tropics (especiallyHEMISPHERESCOLLIDING • 375black Africans, along with Asian Indians and Javanese in Suriname).In parts of Central America and the Andes, the Native Americans were originally so numerous that, even after epidemics and wars, much of the population today remains Native American or mixed. That is especially true at high altitudes in the Andes, where genetically European women have physiological difficulties even in reproducing, and where native Andean crops still offer the most suitable basis for food production. However, even where Native Americans do survive, there has been extensive replacement of their culture and languages with those of the Old World. Of the hundreds of Native American languages originally spoken in North America, all except 187 are no longer spoken at all, and 149 of these last 187 are moribund in the sense that they are being spoken only by old people and no longer learned by children. Of the approximately 40 New World nations, all now have an Indo-European language or creole as the official language. Even in the countries with the largest surviving Native American populations, such as Peru, Bolivia, Mexico, and Guatemala, a glance at photographs of political and business leaders shows that they are disproportionately Europeans, while several Caribbean nations have black African leaders and Guyana has had Asian Indian leaders.The original Native American population has been reduced by a debated large percentage: estimates for North America range up to 95 percent. But the total human population of the Americas is now approximately ten times what it was in 1492, because of arrivals of Old World peoples (Europeans, Africans, and Asians). The Americas' population now consists of a mixture of peoples originating from all continents except Australia. That demographic shift of the last 500 years—the most massive shift on any continent except Australia—has its ultimate roots in developments between about 11,000 b.c. and a.d. 1.CHAPTER19How africa became blackNO MATTER HOW MUCH ONE HAS READ ABOUT AFRICA beforehand, one's first impressions from actually being there are overwhelming. On the streets of Windhoek, capital of newly independent Namibia, I saw black Herero people, black Ovambos, whites, and Namas, different again from both blacks and whites. They were no longer mere pictures in a textbook, but living humans in front of me. Outside Windhoek, the last of the formerly widespread Kalahari Bushmen were struggling for survival. But what most surprised me in Namibia was a street sign: one of downtown Windhoek's main roads was called Goering Street! Surely, I thought, no country could be so dominated by unrepentant Nazis as to name a street after the notorious Nazi Reichskommissar and founder of the Luftwaffe, Hermann Goering! No, it turned out that the street instead commemorated Hermann's father, Heinrich Goering, founding Reichskommissar of the former German colony of South-West Africa, which became Namibia. But Heinrich was also a problematic figure, for his legacy included one of the most vicious attacks by European colonists on Africans, Germany's 1904 war of extermination against the Hereros. Today, while events in neighboring South Africa command more of the world's attention, Namibia as well is struggling to deal with its colonialHOW AFRICA BECAME BLACK • 377past and establish a multiracial society. Namibia illustrated for me how inseparable Africa's past is from its present.Most Americans and many Europeans equate native Africans with blacks, white Africans with recent intruders, and African racial history with the story of European colonialism and slave trading. There is an obvious reason why we focus on those particular facts: blacks are the sole native Africans familiar to most Americans, because they were brought in large numbers as slaves to the United States. But very different peoples may have occupied much of modern black Africa until as recently as a few thousand years ago, and so-called African blacks themselves are heterogeneous. Even before the arrival of white colonialists, Africa already harbored not just blacks but (as we shall see) five of the world's six major divisions of humanity, and three of them are confined as natives to Africa. One-quarter of the world's languages are spoken only in Africa. No other continent approaches this human diversity.Africa's diverse peoples resulted from its diverse geography and its long prehistory. Africa is the only continent to extend from the northern to the southern temperate zone, while also encompassing some of the world's driest deserts, largest tropical rain forests, and highest equatorial mountains. Humans have lived in Africa far longer than anywhere else: our remote ancestors originated there around 7 million years ago, and anatomically modern Homo sapiens may have arisen there since then. The long interactions between Africa's many peoples generated its fascinating prehistory, including two of the most dramatic population movements of the past 5,000 years—the Bantu expansion and the Indonesian colonization of Madagascar. All of those past interactions continue to have heavy consequences, because the details of who arrived where before whom are shaping Africa today.How did those five divisions of humanity get to be where they are now in Africa? Why were blacks the ones who came to be so widespread, rather than the four other groups whose existence Americans tend to forget? How can we ever hope to wrest the answers to those questions from Africa's preliterate past, lacking the written evidence that teaches us about the spread of the Roman Empire? African prehistory is a puzzle on a grand scale, still only partly solved. As it turns out, the story has some little-appreciated but striking parallels with the American prehistory that we encountered in the preceding chapter.378 • GUNS, GERMS, AND STEELThe five major human groups to which Africa was already home by a.d. 1000 are those loosely referred to by laypeople as blacks, whites, African Pygmies, Khoisan, and Asians. Figure 19.1 depicts their distributions, while the portraits following page 288 will remind you of their striking differences in skin color, hair form and color, and facial features. Blacks were formerly confined to Africa, Pygmies and Khoisan still live only there, while many more whites and Asians live outside Africa than in it. These five groups constitute or represent all the major divisions of humanity except for Aboriginal Australians and their relatives.Many readers may already be protesting: don't stereotype people by classifying them into arbitrary "races"! Yes, I acknowledge that each of these so-called major groups is very diverse. To lump people as different as Zulus, Somalis, and Ibos under the single heading of "blacks" ignores the differences between them. We ignore equally big differences when we lump Africa's Egyptians and Berbers with each other and with Europe's Swedes under the single heading of "whites." In addition, the divisions between blacks, whites, and the other major groups are arbitrary, because each such group shades into others: all human groups on Earth have mated with humans of every other group that they encountered. Nevertheless, as we'll see, recognizing these major groups is still so useful for understanding history that I'll use the group names as shorthand, without repeating the above caveats in every sentence.Of the five African groups,– representatives of many populations of blacks and whites are familiar to Americans and Europeans and need no physical description. Blacks occupied the largest area of Africa even as of a.d. 1400: the southern Sahara and most of sub-Saharan Africa (see Figure 19.1). While American blacks of African descent originated mainly from Africa's west coastal zone, similar peoples traditionally occupied East Africa as well, north to the Sudan and south to the southeast coast of South Africa itself. Whites, ranging from Egyptians and Libyans to Moroccans, occupied Africa's north coastal zone and the northern Sahara. Those North Africans would hardly be confused with blue-eyed blond-haired Swedes, but most laypeople would still call them "whites" because they have lighter skin and straighter hair than peoples to the south termed "blacks." Most of Africa's blacks and whites depended on farming or herding, or both, for their living.In contrast, the next two groups, the Pygmies and Khoisan, includeHOWAFRICA BECAME BLACK • 379Peoples of Africa (as ofad 1400)whitesB L A CK SpygmiesIndonesiansKhoisan '19.1. See the text for caveats about describing distributions ofAfri-w peoples in terms of these familiar but problematical groupings.380 • GUNS, GERMS,and steelhunter-gatherers without crops or livestock. Like blacks, Pygmies have dark skins and tightly curled hair. However, Pygmies differ from blacks in their much smaller size, more reddish and less black skins, more extensive facial and body hair, and more prominent foreheads, eyes, and teeth. Pygmies are mostly hunter-gatherers living in groups widely scattered through the Central African rain forest and trading with (or working for) neighboring black farmers.The Khoisan make up the group least familiar to Americans, who are unlikely even to have heard of their name. Formerly distributed over much of southern Africa, they consisted not only of small-sized hunter-gatherers, known as San, but also of larger herders, known as Khoi. (These names are now preferred to the better-known terms Hottentot and Bushmen.) Both the Khoi and the San look (or looked) quite unlike African blacks: their skins are yellowish, their hair is very tightly coiled, and the women tend to accumulate much fat in their buttocks (termed "steatopygia"). As a distinct group, the Khoi have been greatly reduced in numbers: European colonists shot, displaced, or infected many of them, and most of the survivors interbred with Europeans to produce the populations variously known in South Africa as Coloreds or Basters. The San were similarly shot, displaced, and infected, but a dwindling small number have preserved their distinctness in Namibian desert areas unsuitable for agriculture, as depicted some years ago in the widely seen film The Gods Must BeCrazy.The northern distribution of Africa's whites is unsurprising, because physically similar peoples live in adjacent areas of the Near East and Europe. Throughout recorded history, people have been moving back and forth between Europe, the Near East, and North Africa. I'll therefore say little more about Africa's whites in this chapter, since their origins aren't mysterious. Instead, the mystery involves blacks, Pygmies, and Khoisan, whose distributions hint at past population upheavals. For instance, the present fragmented distribution of the 200,000 Pygmies, scattered amid 120 million blacks, suggests that Pygmy hunters were formerly widespread through the equatorial forests until displaced and isolated by the arrival of black farmers. The Khoisan area of southern Africa is surprisingly small for a people so distinct in anatomy and language. Could the Khoisan, too, have been originally more widespread until their more northerly populations were somehow eliminated?I've saved the biggest anomaly for last. The large island of MadagascarHOWAFRICA BECAME BLACK • 381lies only 250 miles off the East African coast, much closer to Africa than to any other continent, and separated by the whole expanse of the Indian Ocean from Asia and Australia. Madagascar's people prove to be a mixture of two elements. Not surprisingly, one element is African blacks, but the other consists of people instantly recognizable, from their appearance, as tropical Southeast Asians. Specifically, the language spoken by all the people of Madagascar—Asians, blacks, and mixed—is Austronesian and very similar to the Malanyan language spoken on the Indonesian island of Borneo, over 4,000 miles across the open Indian Ocean from Madagascar. No other people remotely resembling Borneans live within thousands of miles of Madagascar.These Austronesians, with their Austronesian language and modified Austronesian culture, were already established on Madagascar by the time it was first visited by Europeans, in 1500. This strikes me as the single most astonishing fact of human geography for the entire world. It's as if Columbus, on reaching Cuba, had found it occupied by blue-eyed, blond-haired Scandinavians speaking a language close to Swedish, even though the nearby North American continent was inhabited by Native Americans speaking Amerindian languages. How on earth could prehistoric people of Borneo, presumably voyaging in boats without maps or compasses, end up in Madagascar?The case of Madagascar tells us that peoples' languages, as well as their physical appearance, can yield important clues to their origins. Just by looking at the people of Madagascar, we'd have known that some of them came from tropical Southeast Asia, but we wouldn't have known from which area of tropical Southeast Asia, and we'd never have guessed Borneo. What else can we learn from African languages that we didn't already know from African faces?The mind-boggling complexities of Africa's 1,500 languages were clarified by Stanford University's great linguist Joseph Greenberg, who recognized that all those languages fall into just five families (see Figure 19.2 for their distribution). Readers accustomed to thinking of linguistics as dull and technical may be surprised to learn what fascinating contributions Figure 19.2 makes to our understanding of African history.If we begin by comparing Figure 19.2 with Figure 19.1, we'll see a rough correspondence between language families and anatomically382. • GUNS, GERMS, AND STEELFigure 19.2. Language families of Africa.defined human groups: languages of a given language family tend to be spoken by distinct people. In particular, Afroasiatic speakers mostly prove to be people who would be classified as whites or blacks, Nilo-Saharan and Niger-Congo speakers prove to be blacks, Khoisan speakers Khoisan, and Austronesian speakers Indonesian. This suggests that languages have tended to evolve along with the people who speak them.HOWAFRICA BECAME BLACK « 383Concealed at the top of Figure 19.2 is our first surprise, a big shock for Eurocentric believers in the superiority of so-called Western civilization. We're taught that Western civilization originated in the Near East, was brought to brilliant heights in Europe by the Greeks and Romans, and produced three of the world's great religions: Christianity, Judaism, and Islam. Those religions arose among peoples speaking three closely related languages, termed Semitic languages: Aramaic (the language of Christ and the Apostles)wrong! they spoke Greek, Hebrew, and Arabic, respectively. We instinctively associate Semitic peoples with the Near East.However, Greenberg determined that Semitic languages really form only one of six or more branches of a much larger language family, Afroasiatic, all of whose other branches (and other 222 surviving languages) are confined to Africa. Even the Semitic subfamily itself is mainly African, 12 of its 19 surviving languages being confined to Ethiopia. This suggests that Afroasiatic languages arose in Africa, and that only one branch of them spread to the Near East. Hence it may have been Africa that gave birth to the languages spoken by the authors of the Old and New Testaments and the Koran, the moral pillars of Western civilization.The next surprise in Figure 19.2 is a seeming detail on which I didn't comment when I just told you that distinct peoples tend to have distinct languages. Among Africa's five groups of people—blacks, whites, Pygmies, Khoisan, and Indonesians—only the Pygmies lack any distinct languages: each band of Pygmies speaks the same language as the neighboring group of black farmers. However, if one compares a given language as spoken by Pygmies with the same language as spoken by blacks, the Pygmy version seems to contain some unique words with distinctive sounds.Originally, of course, people as distinctive as the Pygmies, living in a place as distinctive as the equatorial African rain forest, were surely isolated enough to develop their own language family. However, today those languages are gone, and we already saw from Figure 19.1 that the Pygmies' modern distribution is highly fragmented. Thus, distributional and linguistic clues combine to suggest that the Pygmy homeland was engulfed by invading black farmers, whose languages the remaining Pygmies adopted, leaving only traces of their original languages in some words and sounds. We saw previously that much the same is true of the Malaysian Negritos (Semang) and Philippine Negritos, who adopted Austroasiatic and Austronesian languages, respectively, from the farmers who came to surround them.384 • GUNS, GERMS, ANDsteelThe fragmented distribution of Nilo-Saharan languages in Figure 19.2 similarly implies that many speakers of those languages have been engulfed by speakers of Afroasiatic or Niger-Congo languages. But the distribution of Khoisan languages testifies to an even more dramatic engulfing. Those languages are famously unique in the whole world in their use of clicks as consonants. (If you've been puzzled by the name !Kung Bushman, the exclamation mark is not an expression of premature astonishment; it's just how linguists denote a click.) All existing Khoisan languages are confined to southern Africa, with two exceptions. Those exceptions are two very distinctive, click-laden Khoisan languages named Hadza and Sandawe, stranded in Tanzania more than 1,000 miles from the nearest Khoisan languages of southern Africa.In addition, Xhosa and a few other Niger-Congo languages of southern Africa are full of clicks. Even more unexpectedly, clicks or Khoisan words also appear in two Afroasiatic languages spoken by blacks in Kenya, stranded still farther from present Khoisan peoples than are the Hadza and Sandawe peoples of Tanzania. All this suggests that Khoisan languages and peoples formerly extended far north of their present southern African distribution, until they too, like the Pygmies, were engulfed by the blacks, leaving only linguistic legacies of their former presence. That's a unique contribution of the linguistic evidence, something we could hardly have guessed just from physical studies of living people.I have saved the most remarkable contribution of linguistics for last. If you look again at Figure 19.2, you'll see that the Niger-Congo language family is distributed all over West Africa and most of subequatorial Africa, apparently giving no clue as to where within that enormous range the family originated. However, Greenberg recognized that all Niger-Congo languages of subequatorial Africa belong to a single language subgroup termed Bantu. That subgroup accounts for nearly half of the 1,032 Niger-Congo languages and for more than half (nearly 200 million) of the Niger-Congo speakers. But all those 500 Bantu languages are so similar to each other that they have been facetiously described as 500 dialects of a single language.Collectively, the Bantu languages constitute only a single, low-order subfamily of the Niger-Congo language family. Most of the 176 other subfamilies are crammed into West Africa, a small fraction of the entire Niger-Congo range. In particular, the most distinctive Bantu languages, and the non-Bantu Niger-Congo languages most closely related to Bantu lan-HOWAFRICABECAME BLACK • 385guages, are packed into a tiny area of Cameroon and adjacent eastern Nigeria.Evidently, the Niger-Congo language family arose in West Africa; the Bantu branch of it arose at the east end of that range, in Cameroon and Nigeria; and the Bantu then spread out of that homeland over most of subequatorial Africa. That spread must have begun long ago enough that the ancestral Bantu language had time to split into 500 daughter languages, but nevertheless recently enough that all those daughter languages are still very similar to each other. Since all other Niger-Congo speakers, as well as the Bantu, are blacks, we couldn't have inferred who migrated in which direction just from the evidence of physical anthropology.To make this type of linguistic reasoning clear, let me give you a familiar example: the geographic origins of the English language. Today, by far the largest number of people whose first language is English live in North America, with others scattered over the globe in Britain, Australia, and other countries. Each of those countries has its own dialects of English. If we knew nothing else about language distributions and history, we might have guessed that the English language arose in North America and was carried overseas to Britain and Australia by colonists.But all those English dialects form only one low-order subgroup of the Germanic language family. All the other subgroups—the various Scandinavian, German, and Dutch languages—are crammed into northwestern Europe. In particular, Frisian, the other Germanic language most closely related to English, is confined to a tiny coastal area of Holland and western Germany. Hence a linguist would immediately deduce correctly that the English language arose in coastal northwestern Europe and spread around the world from there. In fact, we know from recorded history that English really was carried from there to England by invading Anglo-Saxons in the fifth and sixth centuries a.d.Essentially the same line of reasoning tells us that the nearly 200 million Bantu people, now flung over much of the map of Africa, arose from Cameroon and Nigeria. Along with the North African origins of Semites and the origins of Madagascar's Asians, that's another conclusion that we couldn't have reached without linguistic evidence.We had already deduced, from Khoisan language distributions and the lack of distinct Pygmy languages, that Pygmies and Khoisan peoples had formerly ranged more widely, until they were engulfed by blacks. (I'm using "engulfing" as a neutral all-embracing word, regardless of whether386• GUNS, GERMS, AND STEELthe process involved conquest, expulsion, interbreeding, killing, or epidemics.) We've now seen, from Niger-Congo language distributions, that the blacks who did the engulfing were the Bantu. The physical and linguistic evidence considered so far has let us infer these prehistoric engulfings, but it still hasn't solved their mysteries for us. Only the further evidence that I'll now present can help us answer two more questions: What advantages enabled the Bantu to displace the Pygmies and Khoisan? When did the Bantu reach the former Pygmy and Khoisan homelands?To approach the question about the Bantu's advantages, let's examine the remaining type of evidence from the living present—the evidence derived from domesticated plants and animals. As we saw in previous chapters, that evidence is important because food production led to high population densities, germs, technology, political organization, and other ingredients of power. Peoples who, by accident of their geographic location, inherited or developed food production thereby became able to engulf geographically less endowed people.When Europeans reached sub-Saharan Africa in the 1400s, Africans were growing five sets of crops (Figure 19.3), each of them laden with significance for African history. The first set was grown only in North Africa, extending to the highlands of Ethiopia. North Africa enjoys a Mediterranean climate, characterized by rainfall concentrated in the winter months. (Southern California also experiences a Mediterranean climate, explaining why my basement and that of millions of other southern Cali-fornians often gets flooded in the winter but infallibly dries out in the summer.) The Fertile Crescent, where agriculture arose, enjoys that same Mediterranean pattern of winter rains.Hence North Africa's original crops all prove to be ones adapted to germinating and growing with winter rains, and known from archaeological evidence to have been first domesticated in the Fertile Crescent beginning around 10,000 years ago. Those Fertile Crescent crops spread into climatically similar adjacent areas of North Africa and laid the foundations for the rise of ancient Egyptian civilization. They include such familiar crops as wheat, barley, peasj beans, and grapes. These are familiar to us precisely because they also spread into climatically similar adjacent areas of Europe, thence to America and Australia, and became some of the staple crops of temperate-zone agriculture around the world.HOWAFRICA BECAME BLACK • 387Origins of African crops, with examples(sorghum, pearl millet) SFigure 19.3. The areas of origin of crops grown traditionally in Africa(that is, before the arrival of crops carried by colonizing Europeans),with examples of two crops from each area.As one travels south in Africa across the Saharan desert and reencoun-ters rain in the Sahel zone just south of the desert, one notices that Sahel rains fall in the summer rather than in the winter. Even if Fertile Crescent crops adapted to winter rain could somehow have crossed the Sahara, they would have been difficult to grow in the summer-rain Sahel zone. Instead, we find two sets of African crops whose wild ancestors occur just south of the Sahara, and which are adapted to summer rains and less seasonal vari-388• GUNS, GERMS, AND STEELation in day length. One set consists of plants whose ancestors are widely distributed from west to east across the Sahel zone and were probably domesticated there. They include, notably, sorghum and pearl millet, which became the staple cereals of much of sub-Saharan Africa. Sorghum proved so valuable that it is now grown in areas with hot, dry climates on all the continents, including in the United States.The other set consists of plants whose wild ancestors occur in Ethiopia and were probably domesticated there in the highlands. Most are still grown mainly just in Ethiopia and remain unknown to Americans— including Ethiopia's narcotic chat, its banana-like ensete, its oily noog, its finger millet used to brew its national beer, and its tiny-seeded cereal called teff, used to make its national bread. But every reader addicted to coffee can thank ancient Ethiopian farmers for domesticating the coffee plant. It remained confined to Ethiopia until it caught on in Arabia and then around the world, to sustain today the economies of countries as far-flung as Brazil and Papua New Guinea.The next-to-last set of African crops arose from wild ancestors in the wet climate of West Africa. Some, including African rice, have remained virtually confined there; others, such as African yams, spread.throughout other areas of sub-Saharan Africa; and two, the oil palm and kola nut, reached other continents. West Africans were chewing the caffeine-containing nuts of the latter as a narcotic, long before the Coca-Cola Company enticed first Americans and then the world to drink a beverage originally laced with its extracts.The last batch of African crops is also adapted to wet climates but provides the biggest surprise of Figure 19.3. Bananas, Asian yams, and taro were already widespread in sub-Saharan Africa in the 1400s, and Asian rice was established on the coast of East Africa. But those crops originated in tropical Southeast Asia. Their presence in Africa would astonish us, if the presence of Indonesian people on Madagascar had not already alerted us to Africa's prehistoric Asian connection. Did Austronesians sailing from Borneo land on the East African coast, bestow their crops on. grateful African fanners, pick up African fishermen, and sail off into the sunrise to colonize Madagascar, leaving no other Austronesian traces in Africa?The remaining surprise is that all of Africa's indigenous crops—those of the Sahel, Ethiopia, and West Africa—originated north of the equator. Not a single African crop originated south of it. This already gives us aHOWAFRICA BECAME BLACK • 389hint why speakers of Niger-Congo languages, stemming from north of the equator, were able to displace Africa's equatorial Pygmies and subequato-rial Khoisan people. The failure of the Khoisan and Pygmies to develop agriculture was due not to any inadequacy of theirs as farmers but merely to the accident that southern Africa's wild plants were mostly unsuitable for domestication. Neither Bantu nor white farmers, heirs to thousands of years of farming experience, were subsequently able to develop southern African native plants into food crops.Africa's domesticated animal species can be summarized much more quickly than its plants, because there are so few of them. The sole animal that we know for sure was domesticated in Africa, because its wild ancestor is confined there, is a turkeylike bird called the guinea fowl. Wild ancestors of domestic cattle, donkeys, pigs, dogs, and house cats were native to North Africa but also to Southwest Asia, so we can't yet be certain where they were first domesticated, although the earliest dates currently known for domestic donkeys and house cats favor Egypt. Recent evidence suggests that cattle may have been domesticated independently in North Africa, Southwest Asia, and India, and that all three of those stocks have contributed to modern African cattle breeds. Otherwise, all the remainder of Africa's domestic mammals must have been domesticated elsewhere and introduced as domesticates to Africa, because their wild ancestors occur only in Eurasia. Africa's sheep and goats were domesticated in Southwest Asia, its chickens in Southeast Asia, its horses in southern Russia, and its camels probably in Arabia.The most unexpected feature of this list of African domestic animals is again a negative one. The list includes not a single one of the big wild mammal species for which Africa is famous and which it possesses in such abundance—its zebras and wildebeests, its rhinos and hippos, its giraffes and buffalo. As we'll see, that reality was as fraught with consequences for African history as was the absence of native domestic plants in subequato-rial Africa.This quick tour through Africa's food staples suffices to show that some of them traveled a long way from their points of origin, both inside and outside Africa. In Africa as elsewhere in the world, some peoples were much "luckier" than others, in the suites of domesticable wild plant and animal species that they inherited from their environment. By analogy with the engulfing of Aboriginal Australian hunter-gatherers by British colo-390* GUNS, GERMS, AND STEELnists fed on wheat and cattle, we have to suspect that some of the "lucky" Africans parlayed their advantage into engulfing their African neighbors. Now, at last, let's turn to the archaeological record to find out who engulfed whom when.What can archaeology can tell us about actual dates and places for the rise of farming and herding in Africa? Any reader steeped in the history of Western civilization would be forgiven for assuming that African food production began in ancient Egypt's Nile Valley, land of the pharaohs and pyramids. After all, Egypt by 3000 b.c. was undoubtedly the site of Africa's most complex society, and one of the world's earliest centers of writing. In fact, though, possibly the earliest archaeological evidence for food production in Africa comes instead from the Sahara.Today, of course, much of the Sahara is so dry that it cannot support even grass. But between about 9000 and 4000 b.c. the Sahara was more humid, held numerous lakes, and teemed with game. In that period, Sahar-ans began to tend cattle and make pottery, then to keep sheep and goats, and they may also have been starting to domesticate sorghum and millet. Saharan pastoralism precedes the earliest known date (5200 b.c.) for the arrival of food production in Egypt, in the form of a full package of Southwest Asian winter crops and livestock. Food production also arose in West Africa and Ethiopia, and by around 2500 b.c. cattle herders had already crossed the modern border from Ethiopia into northern Kenya.While those conclusions rest on archaeological evidence, there is also an independent method for dating the arrival of domestic plants and animals: by comparing the words for them in modern languages. Comparisons of terms for plants in southern Nigerian languages of the Niger-Congo family show that the words fall into three groups. First are cases in which the word for a particular crop is very similar in all those southern Nigerian languages. Those crops prove to be ones like West African yams, oil palm, and kola nut—plants that were already believed on botanical and other evidence to be native to West Africa and first domesticated there. Since those are the oldest West African crops, all modern southern Nigerian languages inherited the same original set of words for them.Next come crops whose names are consistent only among the languages falling within a small subgroup of those southern Nigerian languages. Those crops turn out to be ones believed to be of Indonesian origin, suchHOWAFRICA BECAME BLACK • 391as bananas and Asian yams. Evidently, those crops reached southern Nigeria only after languages began to break up into subgroups, so each subgroup coined or received different names for the new plants, which the modern languages of only that particular subgroup inherited. Last come crop names that aren't consistent within language groups at all, but instead follow trade routes. These prove to be New World crops like corn and peanuts, which we know were introduced into Africa after the beginnings of transatlantic ship traffic (a.d. 1492) and diffused since then along trade routes, often bearing their Portuguese or other foreign names.Thus, even if we possessed no botanical or archaeological evidence whatsoever, we would still be able to deduce from the linguistic evidence alone that native West African crops were domesticated first, that Indonesian crops arrived next, and that finally the European introductions came in. The UCLA historian Christopher Ehret has applied this linguistic approach to determining the sequence in which domestic plants and animals became utilized by the people of each African language family. By a method termed glottochronology, based on calculations of how rapidly words tend to change over historical time, comparative linguistics can even yield estimated dates for domestications or crop arrivals.Putting together direct archaeological evidence of crops with the more indirect linguistic evidence, we deduce that the people who were domesticating sorghum and millet in the Sahara thousands of years ago spoke languages ancestral to modern Nilo-Saharan languages. Similarly, the people who first domesticated wet-country crops of West Africa spoke languages ancestral to the modern Niger-Congo languages. Finally, speakers of ancestral Afroasiatic languages may have been involved in domesticating the crops native to Ethiopia, and they certainly introduced Fertile Crescent crops to North Africa.Thus, the evidence derived from plant names in modern African languages permits us to glimpse the existence of three languages being spoken in Africa thousands of years ago: ancestral Nilo-Saharan, ancestral Niger-Congo, and ancestral Afroasiatic. In addition, we can glimpse the existence of ancestral Khoisan from other linguistic evidence, though not that of crop names (because ancestral Khoisan people domesticated no crops). Now surely, since Africa harbors 1,500 languages today, it is big enough to have harbored more than four ancestral languages thousands of years ago. But all those other languages must have disappeared—either because the people speaking them survived but lost their original language, like the3 9 2 'GUNS,GERMS, AND STEELPygmies, or because the people themselves disappeared.The survival of modern Africa's four native language families (that is, the four other than the recently arrived Austronesian language of Madagascar) isn't due to the intrinsic superiority of those languages as vehicles for communication. Instead, it must be attributed to a historical accident: ancestral speakers of Nilo-Saharan, Niger-Congo, and Afroasiatic happened to be living at the right place and time to acquire domestic plants and animals, which let them multiply and either replace other peoples or impose their language. The few modern Khoisan speakers survived mainly because of their isolation in areas of southern Africa unsuitable for Bantu farming.defore we trace Khoisan survival beyond the Bantu tide, let's see what archaeology tells us about Africa's other great prehistoric population movement—the Austronesian colonization of Madagascar. Archaeologists exploring Madagascar have now proved that Austronesians had arrived at least by a.d. 800, possibly as early as a.d. 300. There the Austronesians encountered (and proceeded to exterminate) a strange world of living animals as distinctive as if they had come from another planet, because those animals had evolved on Madagascar during its long isolation. They included giant elephant birds, primitive primates called lemurs as big as gorillas, and pygmy hippos. Archaeological excavations of the earliest human settlements on Madagascar yield remains of iron tools, livestock, and crops, so the colonists were not just a small canoeload of fishermen blown off course; they formed a full-fledged expedition. How did that prehistoric 4,000-mile expedition come about?One hint is in an ancient book of sailors' directions, the Periplus of theErythrean Sea, written by an anonymous merchant living in Egypt around a.d. 100. The merchant describes an already thriving sea trade connecting India and Egypt with the coast of East Africa. With the spread of Islam after a.d. 800, Indian Ocean trade becomes well documented archaeologi-cally by copious quantities of Mideastern (and occasionally even Chinese!) products such as pottery, glass, and porcelain in East African coastal settlements. The traders waited for favorable winds to let them cross the Indian Ocean directly between East Africa and India. When the Portuguese navigator Vasco da Gama became the first European to sail around the southern cape of Africa and reached the Kenya coast in 1498, he encounteredHOWAFRICA BECAME BLACK • 393Swahili trading settlements and picked up a pilot who guided him on that direct route to India.But there was an equally vigorous sea trade from India eastward, between India and Indonesia. Perhaps the Austronesian colonists of Madagascar reached India from Indonesia by that eastern trade route and then fell in with the westward trade route to East Africa, where they joined with Africans and discovered Madagascar. That union of Austronesians and East Africans lives on today in Madagascar's basically Austronesian language, which contains loan words from coastal Kenyan Bantu languages. But there are no corresponding Austronesian loan words in Kenyan languages, and other traces of Austronesians are very thin on the ground in East Africa: mainly just Africa's possible legacy of Indonesian musical instruments (xylophones and zithers) and, of course, the Austronesian crops that became so important in African agriculture. Hence one wonders whether Austronesians, instead of taking the easier route to Madagascar via India and East Africa, somehow (incredibly) sailed straight across the Indian Ocean, discovered Madagascar, and only later got plugged into East African trade routes. Thus, some mystery remains about Africa's most surprising fact of human geography.What can archaeology tell us about the other great population movement in recent African prehistory—the Bantu expansion? We saw from the twin evidence of modern peoples and their languages that sub-Saharan Africa was not always a black continent, as we think of it today. Instead, this evidence suggested that Pygmies had once been widespread in the rain forest of Central Africa, while Khoisan peoples had been widespread in drier parts of subequatorial Africa. Can archaeology test those assumptions?In the case of the Pygmies, the answer is "not yet," merely because archaeologists have yet to discover ancient human skeletons from the Central African forests. For the Khoisan, the answer is "yes." In Zambia, to the north of the modern Khoisan range, archaeologists have found skulls of people possibly resembling the modern Khoisan, as well as stone tools resembling those that Khoisan peoples were still making in southern Africa at the time Europeans arrived.As for how the Bantu came to replace those northern Khoisan, archaeological and linguistic evidence suggest that the expansion of ancestral394 " GUNS, GERMS,and steelBantu farmers from West Africa's inland savanna south into its wetter coastal forest may have begun as early as 3000 b.c. (Figure 19.4). Words still widespread in all Bantu languages show that, already then, the Bantu had cattle and wet-climate crops such as yams, but that they lacked metal and were still engaged in much fishing, hunting, and gathering. They even lost their cattle to disease borne by tsetse flies in the forest. As they spread into the Congo Basin's equatorial forest zone, cleared gardens, and increased in numbers, they began to engulf the Pygmy hunter-gatherers and compress them into the forest itself.By soon after 1000 b.c. the Bantu had emerged from the eastern side of the forest into the more open country of East Africa's Rift Valley and Great Lakes. Here they encountered a melting pot of Afroasiatic and Nilo-Saharan farmers and herders growing millet and sorghum and raising livestock in drier areas, along with Khoisan hunter-gatherers. Thanks to their wet-climate crops inherited from their West African homeland, the Bantu were able to farm in wet areas of East Africa unsuitable for all those previous occupants. By the last centuries b.c. the advancing Bantu had reached the East African coast.In East Africa the Bantu began to acquire millet and sorghum (along with the Nilo-Saharan names for those crops), and to reacquire cattle, from their Nilo-Saharan and Afroasiatic neighbors. They also acquired iron, which had just begun to be smelted in Africa's Sahel zone. The origins of ironworking in sub-Saharan Africa soon after 1000 b.c. are still unclear. That early date is suspiciously close to dates for the arrival of Near Eastern ironworking techniques in Carthage, on the North African coast. Hence historians often assume that knowledge of metallurgy reached sub-Saharan Africa from the north. On the other hand, copper smelting had been going on in the West African Sahara and Sahel since at least 2000 b.c. That could have been the precursor to an independent African discovery of iron metallurgy. Strengthening that hypothesis, the iron-smelting techniques of smiths in sub-Saharan Africa were so different from those of the Mediterranean as to suggest independent development: African smiths discovered how to produce high temperatures in their village furnaces and manufacture steel over 2,000 years before the Bessemer furnaces of 19th-century Europe and America.With the addition of iron tools to their wet-climate crops, the Bantu had finally put together a military-industrial package that was unstoppable in the subequatorial Africa of the time. In East Africa they still had toHOWAFRICA BECAME BLACK • 395The Bantu expansion: 3000 bc to ad 500figure 19.4. Approximate paths of the expansion that carried peoplespeaking Bantu languages, originating from a homeland (designated H) 'n the northwest comer of the current Bantu area, over eastern and southern Africa between 3000 b.c. and a.d. 500.3 9 6 • GUNS, GERMS,and steelcompete against numerous Nilo-Saharan and Afroasiatic Iron Age farmers. But to the south lay 2,000 miles of country thinly occupied by Khoisan hunter-gatherers, lacking iron and crops. Within a few centuries, in one of the swiftest colonizing advances of recent prehistory, Bantu farmers had swept all the way to Natal, on the east coast of what is now South Africa.It's easy to oversimplify what was undoubtedly a rapid and dramatic expansion, and to picture all Khoisan in the way being trampled by onrushing Bantu hordes. In reality, things were more complicated. Khoisan peoples of southern Africa had already acquired sheep and cattle a few centuries ahead of the Bantu advance. The first Bantu pioneers probably were few in number, selected wet-forest areas suitable for their yam agriculture, and leapfrogged over drier areas, which they left to Khoisan herders and hunter-gatherers. Trading and marriage relationships were undoubtedly established between those Khoisan and the Bantu farmers, each occupying different adjacent habitats, just as Pygmy hunter-gatherers and Bantu farmers still do today in equatorial Africa. Only gradually, as the Bantu multiplied and incorporated cattle and dry-climate cereals into their economy, did they fill in the leapfrogged areas. But the eventual result was still the same: Bantu farmers occupying most of the former Khoisan realm; the legacy of those former Khoisan inhabitants reduced to clicks in scattered non-Khoisan languages, as well as buried skulls and stone tools waiting for archaeologists to discover; and the Khoisan-like appearance of some southern African Bantu peoples.What actually happened to all those vanished Khoisan populations? We don't know. All we can say for sure is that, in places where Khoisan peoples had lived for perhaps tens of thousands of years, there are now Bantu. We can only venture a guess, by analogy with witnessed events in modern times when steel-toting white farmers collided with stone tool-using hunter-gatherers of Aboriginal Australia and Indian California. There, we know that hunter-gatherers were rapidly eliminated in a combination of ways: they were driven out, men were killed or enslaved, women were appropriated as wives, and both sexes became infected with epidemics of the farmers' diseases. An example of such a disease in Africa is malaria, which is borne by mosquitoes that breed around farmers' villages, and to which the invading Bantu had already developed genetic resistance but Khoisan hunter-gatherers probably had not.However, Figure 19.1, of recent African human distributions, reminds us that the Bantu did not overrun all the Khoisan, who did survive inHOWAFRICA BECAME BLACK • 397southern African areas unsuitable for Bantu agriculture. The southernmost Bantu people, the Xhosa, stopped at the Fish River on South Africa's south coast, 500 miles east of Cape Town. It's not that the Cape of Good Hope itself is too dry for agriculture: it is, after all, the breadbasket of modern South Africa. Instead, the Cape has a Mediterranean climate of winter rains, in which the Bantu summer-rain crops do not grow. By 1652, the year the Dutch arrived at Cape Town with their winter-rain crops of Near Eastern origin, the Xhosa had still not spread beyond the Fish River.That seeming detail of plant geography had enormous implications for politics today. One consequence was that, once South African whites had quickly killed or infected or driven off the Cape's Khoisan population, whites could claim correctly that they had occupied the Cape before the Bantu and thus had prior rights to it. That claim needn't be taken seriously, since the prior rights of the Cape Khoisan didn't inhibit whites from dispossessing them. The much heavier consequence was that the Dutch settlers in 1652 had to contend only with a sparse population of Khoisan herders, not with a dense population of steel-equipped Bantu farmers. When whites finally spread east to encounter the Xhosa at the Fish River in 1702, a period of desperate fighting began. Even though Europeans by then could supply troops from their secure base at the Cape, it took nine wars and 175 years for their armies, advancing at an average rate of less than one mile per year, to subdue the Xhosa. How could whites have succeeded in establishing themselves at the Cape at all, if those first few arriving Dutch ships had faced such fierce resistance?Thus, the problems of modern South Africa stem at least in part from a geographic accident. The homeland of the Cape Khoisan happened to contain few wild plants suitable for domestication; the Bantu happened to inherit summer-rain crops from their ancestors of 5,000 years ago; and Europeans happened to inherit winter-rain crops from their ancestors of nearly 10,000 years ago. Just as the sign "Goering Street" in the capital of newly independent Namibia reminded me, Africa's past has stamped itself deeply on Africa's present.That's how the Bantu were able to engulf the Khoisan, instead of vice versa. Now let's turn to the remaining question in our puzzle of African prehistory: why Europeans were the ones to colonize sub-Saharan Africa. That it was not the other way around is especially surprising, because398 • GUNS, GERMS, ANDsteelAfrica was the sole cradle of human evolution for millions of years, as well as perhaps the homeland of anatomically modern Homo sapiens. To these advantages of Africa's enormous head start were added those of highly diverse climates and habitats and of the world's highest human diversity. An extraterrestrial visiting Earth 10,000 years ago might have been forgiven for predicting that Europe would end up as a set of vassal states of a sub-Saharan African empire.The proximate reasons behind the outcome of Africa's collision with Europe are clear. Just as in their encounter with Native Americans, Europeans entering Africa enjoyed the triple advantage of guns and other technology, widespread literacy, and the political organization necessary to sustain expensive programs of exploration and conquest. Those advantages manifested themselves almost as soon as the collisions started: barely four years after Vasco da Gama first reached the East African coast, in 1498, he returned with a fleet bristling with cannons to compel the surrender of East Africa's most important port, Kilwa, which controlled the Zimbabwe gold trade. But why did Europeans develop those three advantages before sub-Saharan Africans could?As we have discussed, all three arose historically from the development of food production. But food production was delayed in sub-Saharan Africa (compared with Eurasia) by Africa's paucity of domesticable native animal and plant species, its much smaller area suitable for indigenous food production, and its north-south axis, which retarded the spread of food production and inventions. Let's examine how those factors operated.First, as regards domestic animals, we've already seen that those of sub-Saharan Africa came from Eurasia, with the possible exception of a few from North Africa. As a result, domestic animals did not reach sub-Saharan Africa until thousands of years after they began to be utilized by emerging Eurasian civilizations. That's initially surprising, because we think of Africa as the continent of big wild mammals. But we saw in Chapter 9 that a wild animal, to be domesticated, must be sufficiently docile, submissive to humans, cheap to feed, and immune to diseases and must grow rapidly and breed well in captivity. Eurasia's native cows, sheep, goats, horses, and pigs were among the world's few large wild animal species to pass all those tests. Their African equivalents—such as the African buffalo, zebra, bush pig, rhino, and hippopotamus—have never been domesticated, not even in modern times.HOWAFRICA BECAME BLACK • 399It's true, of course, that some large African animals have occasionally been tamed. Hannibal enlisted tamed African elephants in his unsuccessful war against Rome, and ancient Egyptians may have tamed giraffes and other species. But none of those tamed animals was actually domesticated—that is, selectively bred in captivity and genetically modified so as to become more useful to humans. Had Africa's rhinos and hippos been domesticated and ridden, they would not only have fed armies but also have provided an unstoppable cavalry to cut through the ranks of European horsemen. Rhino-mounted Bantu shock troops could have overthrown the Roman Empire. It never happened.A second factor is a corresponding, though less extreme, disparity between sub-Saharan Africa and Eurasia in domesticable plants. The Sahel, Ethiopia, and West Africa did yield indigenous crops, but many fewer varieties than grew in Eurasia. Because of the limited variety of wild starting material suitable for plant domestication, even Africa's earliest agriculture may have begun several thousand years later than that of the Fertile Crescent.Thus, as far as plant and animal domestication was concerned, the head start and high diversity lay with Eurasia, not with Africa. A third factor is that Africa's area is only about half that of Eurasia. Furthermore, only about one-third of its area falls within the sub-Saharan zone north of the equator that was occupied by farmers and herders before 1000 b.c. Today, the total population of Africa is less than 700 million, compared with 4 billion for Eurasia. But, all other things being equal, more land and more people mean more competing societies and inventions, hence a faster pace of development.The remaining factor behind Africa's slower rate of post-Pleistocene development compared with Eurasia's is the different orientation of the main axes of these continents. Like that of the Americas, Africa's major axis is north-south, whereas Eurasia's is east-west (Figure 10.1). As one moves along a north-south axis, one traverses zones differing greatly in climate, habitat, rainfall, day length, and diseases of crops and livestock. Hence crops and animals domesticated or acquired in one part of Africa had great difficulty in moving to other parts. In contrast, crops and animals moved easily between Eurasian societies thousands of miles apart but at the same latitude and sharing similar climates and day lengths.The slow passage or complete halt of crops and livestock along Africa's north-south axis had important consequences. For example, the Mediter-400 •GUNS,GERMS, AND STEELranean crops that became Egypt's staples require winter rains and seasonal variation in day length for their germination. Those crops were unable to spread south of the Sudan, beyond which they encountered summer rains and little or no seasonal variation in daylight. Egypt's wheat and barley never reached the Mediterranean climate at the Cape of Good Hope until European colonists brought them in 1652, and the Khoisan never developed agriculture. Similarly, the Sahel crops adapted to summer rain and to little or no seasonal variation in day length were brought by the Bantu into southern Africa but could not grow at the Cape itself, thereby halting the advance of Bantu agriculture. Bananas and other tropical Asian crops for which Africa's climate is eminently suitable, and which today are among the most productive staples of tropical African agriculture, were unable to reach Africa by land routes. They apparently did not arrive until the first millennium a.d., long after their domestication in Asia, because they had to wait for large-scale boat traffic across the Indian Ocean.Africa's north-south axis also seriously impeded the spread of livestock. Equatorial Africa's tsetse flies, carrying trypanosomes to which native African wild mammals are resistant, proved devastating to introduced Eurasian and North African species of livestock. The cows that the Bantu acquired from the tsetse-free Sahel zone failed to survive the Bantu expansion through the equatorial forest. Although horses had already reached Egypt around 1800 b.c. and transformed North African warfare soon thereafter, they did not cross the Sahara to drive the rise of cavalry-mounted West African kingdoms until the first millennium a.d., and they never spread south through the tsetse fly zone. While cattle, sheep, and goats had already reached the northern edge of the Serengeti in the third millennium b.c., it took more than 2,000 years beyond that for livestock to cross the Serengeti and reach southern Africa.Similarly slow in spreading down Africa's north-south axis was human technology. Pottery, recorded in the Sudan and Sahara around 8000 b.c., did not reach the Cape until around a.d. 1. Although writing developed in Egypt by 3000 b.c. and spread in an alphabetized form to the Nubian kingdom of Meroe, and although alphabetic writing reached Ethiopia (possibly from Arabia), writing did not arise independently in the rest of Africa, where it was instead brought in from the outside by Arabs and Europeans.In short, Europe's colonization of Africa had nothing to do with differ-HOWAFRICA BECAME BLACK • 401ences between European and African peoples themselves, as white racists assume. Rather, it was due to accidents of geography and biogeography— in particular, to the continents' different areas, axes, and suites of wild plant and animal species. That is, the different historical trajectories of Africa and Europe stem ultimately from differences in real estate.YALl'S QUESTION WENT TO THE HEART OF THE CURRENT human condition, and of post-Pleistocene human history. Now that we have completed this brief tour over the continents, how shall we answer Yali?I would say to Yali: the striking differences between the long-term histories of peoples of the different continents have been due not to innate differences in the peoples themselves but to differences in their environments. I expect that if the populations of Aboriginal Australia and Eurasia could have been interchanged during the Late Pleistocene, the original Aboriginal Australians would now be the ones occupying most of the Americas and Australia, as well as Eurasia, while the original Aboriginal Eurasians would be the ones now reduced to downtrodden population fragments in Australia. One might at first be inclined to dismiss this assertion as meaningless, because the experiment is imaginary and my claim about its outcome cannot be verified. But historians are nevertheless able to evaluate related hypotheses by retrospective tests. For instance, one can examine what did happen when European farmers were transplanted to Greenland or the U.S. Great Plains, and when farmers stemming ultimately from China emigrated to the Chatham Islands, the rain forests of Borneo, or the volcanic soils of Java or Hawaii. These tests confirm that the same4 O 6 *EPILOGUEancestral peoples either ended up extinct, or returned to living as hunter-gatherers, or went on to build complex states, depending on their environments. Similarly, Aboriginal Australian hunter-gatherers, variously transplanted to Flinders Island, Tasmania, or southeastern Australia, ended up extinct, or as hunter-gatherers with the modern world's simplest technology, or as canal builders intensively managing a productive fishery, depending on their environments.Of course, the continents differ in innumerable environmental features affecting trajectories of human societies. But a mere laundry list of every possible difference does not constitute an answer to Yali's question. Just four sets of differences appear to me to be the most important ones.The first set consists of continental differences in the wild plant and animal species available as starting materials for domestication. That's because food production was critical for the accumulation of food surpluses that could feed non-food-producing specialists, and for the buildup of large populations enjoying a military advantage through mere numbers even before they had developed any technological or political advantage. For both of those reasons, all developments of economically complex, socially stratified, politically centralized societies beyond the level of small nascent chiefdoms were based on food production.But most wild animal and plant species have proved unsuitable for domestication: food production has been based on relatively few species of livestock and crops. It turns out that the number of wild candidate species for domestication varied greatly among the continents, because of differences in continental areas and also (in the case of big mammals) in Late Pleistocene extinctions. These extinctions were much more severe in Australia and the Americas than in Eurasia or Africa. As a result, Africa ended up biologically somewhat less well endowed than the much larger Eurasia, the Americas still less so, and Australia even less so, as did Yali's New Guinea (with one-seventieth of Eurasia's area and with all of its original big mammals extinct in the Late Pleistocene).On each continent, animal and plant domestication was concentrated in a few especially favorable homelands accounting for only a small fraction of the continent's total area. In the case of technological innovations and political institutions as well, most societies acquire much more from other societies than they invent themselves. Thus, diffusion and migration within a continent contribute importantly to the development of its societies, which tend in the long run to share each other's developments (insofarTHE FUTURE OF HUMAN HISTORY AS A SCIENCE • 407as environments permit) because of the processes illustrated in such simple form by Maori New Zealand's Musket Wars. That is, societies initially lacking an advantage either acquire it from societies possessing it or (if they fail to do so) are replaced by those other societies.Hence a second set of factors consists of those affecting rates of diffusion and migration, which differed greatly among continents. They were most rapid in Eurasia, because of its east-west major axis and its relatively modest ecological and geographical barriers. The reasoning is straightforward for movements of crops and livestock, which depend strongly on climate and hence on latitude. But similar reasoning also applies to the diffusion of technological innovations, insofar as they are best suited without modification to specific environments. Diffusion was slower in Africa and especially in the Americas, because of those continents' north-south major axes and geographic and ecological barriers. It was also difficult in traditional New Guinea, where rugged terrain and the long backbone of high mountains prevented any significant progress toward political and linguistic unification.Related to these factors affecting diffusion within continents is a third set of factors influencing diffusion between continents, which may also help build up a local pool of domesticates and technology. Ease of intercontinental diffusion has varied, because some continents are more isolated than others. Within the last 6,000 years it has been easiest from Eurasia to sub-Saharan Africa, supplying most of Africa's species of livestock. But interhemispheric diffusion made no contribution to Native America's complex societies, isolated from Eurasia at low latitudes by broad oceans, and at high latitudes by geography and by a climate suitable just for hunting-gathering. To Aboriginal Australia, isolated from Eurasia by the water barriers of the Indonesian Archipelago, Eurasia's sole proven contribution was the dingo.The fourth and last set of factors consists of continental differences in area or total population size. A larger area or population means more potential inventors, more competing societies, more innovations available to adopt—and more pressure to adopt and retain innovations, because societies failing to do so will tend to be eliminated by competing societies. That fate befell African pygmies and many other hunter-gatherer populations displaced by farmers. Conversely, it also befell the stubborn, conservative Greenland Norse farmers, replaced by Eskimo hunter-gatherers whose subsistence methods and technology were far superior to those of4 O 8 • EPILOGUEthe Norse under Greenland conditions. Among the world's landmasses, area and the number of competing societies were largest for Eurasia, much smaller for Australia and New Guinea and especially for Tasmania. The Americas, despite their large aggregate area, were fragmented by geography and ecology and functioned effectively as several poorly connected smaller continents.Those four sets of factors constitute big environmental differences that can be quantified objectively and that are not subject to dispute. While one can contest my subjective impression that New Guineans are on the average smarter than Eurasians, one cannot deny that New Guinea has a much smaller area and far fewer big animal species than Eurasia. But mention of these environmental differences invites among historians the label "geographic determinism," which raises hackles. The label seems to have unpleasant connotations, such as that human creativity counts for nothing, or that we humans are passive robots helplessly programmed by climate, fauna, and flora. Of course these fears are misplaced. Without human inventiveness, all of us today would still be cutting our meat with stone tools and eating it raw, like our ancestors of a million years ago. All human societies contain inventive people. It's just that some environments provide more starting materials, and more favorable conditions for utilizing inventions, than do other environments.These answers to Yali's question are longer and more complicated than Yali himself would have wanted. Historians, however, may find them too brief and oversimplified. Compressing 13,000 years of history on all continents into a 400-page book works out to an average of about one page per continent per 150 years, making brevity and simplification inevitable. Yet the compression brings a compensating benefit: long-term comparisons of regions yield insights that cannot be won from short-term studies of single societies.Naturally, a host of issues raised by Yali's question remain unresolved. At present, we can put forward some partial answers plus a research agenda for the future, rather than a fully developed theory. The challenge now is to develop human history as a science, on a par with acknowledged historical sciences such as astronomy, geology, and evolutionary biology. Hence it seems appropriate to conclude this book by looking to the future of the discipline of history, and by outlining some of the unresolved issues.THEFUTURE OF HUMAN HISTORY AS A SCIENCE • 409The most straightforward extension of this book will be to quantify further, and thus to establish more convincingly the role of, intercontinental differences in the four sets of factors that appear to be most important. To illustrate differences in starting materials for domestication, I provided numbers for each continent's total of large wild terrestrial mammalian herbivores and omnivores (Table 9.2) and of large-seeded cereals (Table 8.1). One extension would be to assemble corresponding numbers for large-seeded legumes (pulses), such as beans, peas, and vetches. In addition, I mentioned factors disqualifying big mammalian candidates for domestication, but I did not tabulate how many candidates are disqualified by each factor on each continent. It would be interesting to do so, especially for Africa, where a higher percentage of candidates is disqualified than in Eurasia: which disqualifying factors are most important in Africa, and what has selected for their high frequency in African mammals? Quantitative data should also be assembled to test my preliminary calculations suggesting differing rates of diffusion along the major axes of Eurasia, the Americas, and Africa.A second extension will be to smaller geographic scales and shorter time scales than those of this book. For instance, the following obvious question has probably occurred to readers already: why, within Eurasia, were European societies, rather than those of the Fertile Crescent or China or India, the ones that colonized America and Australia, took the lead in technology, and became politically and economically dominant in the modern world? A historian who had lived at any time between 8500 b.c. and a.d. 1450, and who had tried then to predict future historical trajectories, would surely have labeled Europe's eventual dominance as the least likely outcome, because Europe was the most backward of those three Old World regions for most of those 10,000 years. From 8500 b.c. until the rise of Greece and then Italy after 500 b.c., almost all major innovations in western Eurasia—animal domestication, plant domestication, writing, metallurgy, wheels, states, and so on—arose in or near the Fertile Crescent. Until the proliferation of water mills after about a.d. 900, Europe west or north of the Alps contributed nothing of significance to Old World technology or civilization; it was instead a recipient of developments from the eastern Mediterranean, Fertile Crescent, and China. Even from a.d. 1000 to 1450 the flow of science and technology was predominantly into410• EPILOGUEEurope from the Islamic societies stretching from India to North Africa, rather than vice versa. During those same centuries China led the world in technology, having launched itself on food production nearly as early as the Fertile Crescent did.VlS$T"Why, then, did the Fertile Crescent and China eventually lose their enormous leads of thousands of years to late-starting Europe? One can, of course, point to proximate factors behind Europe's rise: its development of a merchant class, capitalism, and patent protection for inventions, its failure to develop absolute despots and crushing taxation, and its Greco-Judeo-Christian tradition of critical empirical inquiry. Still, for all such proximate causes one must raise the question of ultimate cause: why did these proximate factors themselves arise in Europe, rather than in China or the Fertile Crescent?For the Fertile Crescent, the answer is clear. Once it had lost the head start that it had enjoyed thanks to its locally available concentration of domesticable wild plants and animals, the Fertile Crescent possessed no further compelling geographic advantages. The disappearance of that head start can be traced in detail, as the westward shift in powerful empires. After the rise of Fertile Crescent states in the fourth millennium b.c., the center of power initially remained in the Fertile Crescent, rotating between empires such as those of Babylon, the Hittites, Assyria, and Persia. With the Greek conquest of all advanced societies from Greece east to India under Alexander the Great in the late fourth century b.c., power finally made its first shift irrevocably westward. It shifted farther west with Rome's conquest of Greece in the second century b.c., and after the fall of the Roman Empire it eventually moved again, to western and northern Europe.The major factor behind these shifts becomes obvious as soon as one compares the modern Fertile Crescent with ancient descriptions of it. Today, the expressions "Fertile Crescent" and "world leader in food production" are absurd. Large areas of the former Fertile Crescent are now desert, semidesert, steppe, or heavily eroded or salinized terrain unsuited for agriculture. Today's ephemeral wealth of some of the region's nations, based on the single nonrenewable resource of oil, conceals the region's long-standing fundamental poverty and difficulty in feeding itself.In ancient times, however, much of the Fertile Crescent and eastern Mediterranean region, including Greece, was covered with forest. The region's transformation from fertile woodland to eroded scrub or desertTHEFUTURE OF HUMAN HISTORY AS A SCIENCE • 4 I Ihas been elucidated by paleobotanists and archaeologists. Its woodlands were cleared for agriculture, or cut to obtain construction timber, or burned as firewood or for manufacturing plaster. Because of low rainfall and hence low primary productivity (proportional to rainfall), regrowth of vegetation could not keep pace with its destruction, especially in the presence of overgrazing by abundant goats. With the tree and grass cover removed, erosion proceeded and valleys silted up, while irrigation agriculture in the low-rainfall environment led to salt accumulation. These processes, which began in the Neolithic era, continued into modern times. For instance, the last forests near the ancient Nabataean capital of Petra, in modern Jordan, were felled by the Ottoman Turks during construction of the Hejaz railroad just before World War I.Thus, Fertile Crescent and eastern Mediterranean societies had the misfortune to arise in an ecologically fragile environment. They committed ecological suicide by destroying their own resource base. Power shifted westward as each eastern Mediterranean society in turn undermined itself, beginning with the oldest societies, those in the east (the Fertile Crescent). Northern and western Europe has been spared this fate, not because its inhabitants have been wiser but because they have had the good luck to live in a more robust environment with higher rainfall, in which vegetation regrows quickly. Much of northern and western Europe is still able to support productive intensive agriculture today, 7,000 years after the arrival of food production. In effect, Europe received its crops, livestock, technology, and writing systems from the Fertile Crescent, which then gradually eliminated itself as a major center of power and innovation.That is how the Fertile Crescent lost its huge early lead over Europe. Why did China also lose its lead? Its falling behind is initially surprising, because China enjoyed undoubted advantages: a rise of food production nearly as early as in the Fertile Crescent; ecological diversity from North to South China and from the coast to the high mountains of the Tibetan plateau, giving rise to a diverse set of crops, animals, and technology; a large and productive expanse, nourishing the largest regional human population in the world; and an environment less dry or ecologically fragile than the Fertile Crescent's, allowing China still to support productive intensive agriculture after nearly 10,000 years, though its environmental problems are increasing today and are more serious than western Europe's.These advantages and head start enabled medieval China to lead the world in technology. The long list of its major technological firsts includes4 12 •EPILOGUEcast iron, the compass, gunpowder, paper, printing, and many others mentioned earlier. It also led the world in political power, navigation, and control of the seas. In the early 15th century it sent treasure fleets, each consisting of hundreds of ships up to 400 feet long and with total crews of up to 28,000, across the Indian Ocean as far as the east coast of Africa, decades before Columbus's three puny ships crossed the narrow Atlantic Ocean to the Americas' east coast. Why didn't Chinese ships proceed around Africa's southern cape westward and colonize Europe, before Vasco da Gama's own three puny ships rounded the Cape of Good Hope eastward and launched Europe's colonization of East Asia? Why didn't Chinese ships cross the Pacific to colonize the Americas' west coast? Why, in brief, did China lose its technological lead to the formerly so backward Europe?The end of China's treasure fleets gives us a clue. Seven of those fleets sailed from China between a.d. 1405 and 1433. They were then suspended as a result of a typical aberration of local politics that could happen anywhere in the world: a power struggle between two factions at the Chinese court (the eunuchs and their opponents). The former faction had been identified with sending and captaining the fleets. Hence when the latter faction gained the upper hand in a power struggle, it stopped sending fleets, eventually dismantled the shipyards, and forbade oceangoing shipping. The episode is reminiscent of the legislation that strangled development of public electric lighting in London in the 1880s, the isolationism of the United States between the First and Second World Wars, and any number of backward steps in any number of countries, all motivated by local political issues. But in China there was a difference, because the entire region was politically unified. One decision stopped fleets over the whole of China. That one temporary decision became irreversible, because no shipyards remained to turn out ships that would prove the folly of that temporary decision, and to serve as a focus for rebuilding other shipyards.Now contrast those events in China with what happened when fleets of exploration began to sail from politically fragmented Europe. Christopher Columbus, an Italian by birth, switched his allegiance to the duke of Anjou in France, then to the king of Portugal. When the latter refused his request for ships in which to explore westward, Columbus turned to the duke of Medina-Sedonia, who also refused, then to the count of Medina-Celi, who did likewise, and finally to the king and queen of Spain, who denied Columbus's first request but eventually granted his renewed appeal. HadTHEFUTURE OF HUMAN HISTORY AS A SCIENCE • 413Europe been united under any one of the first three rulers, its colonization of the Americas might have been stillborn.In fact, precisely because Europe was fragmented, Columbus succeeded on his fifth try in persuading one of Europe's hundreds of princes to sponsor him. Once Spain had thus launched the European colonization of America, other European states saw the wealth flowing into Spain, and six more joined in colonizing America. The story was the same with Europe's cannon, electric lighting, printing, small firearms, and innumerable other innovations: each was at first neglected or opposed in some parts of Europe for idiosyncratic reasons, but once adopted in one area, it eventually spread to the rest of Europe.These consequences of Europe's disunity stand in sharp contrast to those of China's unity. From time to time the Chinese court decided to halt other activities besides overseas navigation: it abandoned development of an elaborate water-driven spinning machine, stepped back from the verge of an industrial revolution in the 14th century, demolished or virtually abolished mechanical clocks after leading the world in clock construction, and retreated from mechanical devices and technology in general after the late 15th century. Those potentially harmful effects of unity have flared up again in modern China, notably during the madness of the Cultural Revolution in the 1960s and 1970s, when a decision by one or a few leaders closed the whole country's school systems for five years.China's frequent unity and Europe's perpetual disunity both have a long history. The most productive areas of modern China were politically joined for the first time in 221 b.c. and have remained so for most of the time since then. China has had only a single writing system from the beginnings of literacy, a single dominant language for a long time, and substantial cultural unity for two thousand years. In contrast, Europe has never come remotely close to political unification: it was still splintered into 1,000 independent statelets in the 14th century, into 500 statelets in a.d. 1500, got down to a minimum of 25 states in the 1980s, and is now up again to nearly 40 at the moment that I write this sentence. Europe still has 45 languages, each with its own modified alphabet, and even greater cultural diversity. The disagreements that continue today to frustrate even modest attempts at European unification through the European Economic Community (EEC) are symptomatic of Europe's ingrained commitment to disunity.Hence the real problem in understanding China's loss of political and414' EPILOGUEtechnological preeminence to Europe is to understand China's chronic unity and Europe's chronic disunity. The answer is again suggested by maps (see page 415). Europe has a highly indented coastline, with five large peninsulas that approach islands in their isolation, and all of which evolved independent languages, ethnic groups, and governments: Greece, Italy, Iberia, Denmark, and Norway / Sweden. China's coastline is much smoother, and only the nearby Korean Peninsula attained separate importance. Europe has two islands (Britain and Ireland) sufficiently big to assert their political independence and to maintain their own languages and ethnicities, and one of them (Britain) big and close enough to become a major independent European power. But even China's two largest islands, Taiwan and Hainan, have each less than half the area of Ireland; neither was a major independent power until Taiwan's emergence in recent decades; and Japan's geographic isolation kept it until recently much more isolated politically from the Asian mainland than Britain has been from mainland Europe. Europe is carved up into independent linguistic, ethnic, and political units by high mountains (the Alps, Pyrenees, Carpathians, and Norwegian border mountains), while China's mountains east of the Tibetan plateau are much less formidable barriers. China's heartland is bound together from east to west by two long navigable river systems in rich alluvial valleys (the Yangtze and Yellow Rivers), and it is joined from north to south by relatively easy connections between these two river systems (eventually linked by canals). As a result, China very early became dominated by two huge geographic core areas of high productivity, themselves only weakly separated from each other and eventually fused into a single core. Europe's two biggest rivers, the Rhine and Danube, are smaller and connect much less of Europe. Unlike China, Europe has many scattered small core areas, none big enough to dominate the others for long, and each the center of chronically independent states.Once China was finally unified, in 221 b.c., no other independent state ever had a chance of arising and persisting for long in China. Although periods of disunity returned several times after 221 B.C., they always ended in reunification. But the unification of Europe has resisted the efforts of such determined conquerors as Charlemagne, Napoleon, and Hitler; even the Roman Empire at its peak never controlled more than half of Europe's area.Thus, geographic connectedness and only modest internal barriers gave China an initial advantage. North China, South China, the coast, and the500 milesComparison of the coastlines of China and of Europe, drawn to the same scale. Note that Europe's is much more indented and includes more largepeninsulas and two large islands.4 I 6 •EPILOGUEinterior contributed different crops, livestock, technologies, and cultural features to the eventually unified China. For example, millet cultivation, bronze technology, and writing arose in North China, while rice cultivation and cast-iron technology emerged in South China. For much of this book I have emphasized the diffusion of technology that takes place in the absence of formidable barriers. But China's connectedness eventually became a disadvantage, because a decision by one despot could and repeatedly did halt innovation. In contrast, Europe's geographic balkanization resulted in dozens or hundreds of independent, competing statelets and centers of innovation. If one state did not pursue some particular innovation, another did, forcing neighboring states to do likewise or else be conquered or left economically behind. Europe's barriers were sufficient to prevent political unification, but insufficient to halt the spread of technology and ideas. There has never been one despot who could turn off the tap for all of Europe, as of China.These comparisons suggest that geographic connectedness has exerted both positive and negative effects on the evolution of technology. As a result, in the very long run, technology may have developed most rapidly in regions with moderate connectedness, neither too high nor too low. Technology's course over the last 1,000 years in China, Europe, and possibly the Indian subcontinent exemplifies those net effects of high, moderate, and low connectedness, respectively.Naturally, additional factors contributed to history's diverse courses in different parts of Eurasia. For instance, the Fertile Crescent, China, and Europe differed in their exposure to the perennial threat of barbarian invasions by horse-mounted pastoral nomads of Central Asia. One of those nomad groups (the Mongols) eventually destroyed the ancient irrigation systems of Iran and Iraq, but none of the Asian nomads ever succeeded in establishing themselves in the forests of western Europe beyond the Hungarian plains. Environmental factors also include the Fertile Crescent's geographically intermediate location, controlling the trade routes linking China and India to Europe, and China's more remote location from Eurasia's other advanced civilizations, making China a gigantic virtual island within a continent. China's relative isolation is especially relevant to its adoption and then rejection of technologies, so reminiscent of the rejections on Tasmania and other islands (Chapters 13 and 15). But this brief discussion may at least indicate the relevance of environmental factors toTHEFUTURE OF HUMAN HISTORY AS A SCIENCE • 417smaller-scale and shorter-term patterns of history, as well as to history's broadest pattern.The histories of the Fertile Crescent and China also hold a salutary lesson for the modern world: circumstances change, and past primacy is no guarantee of future primacy. One might even wonder whether the geographical reasoning employed throughout this book has at last become wholly irrelevant in the modern world, now that ideas diffuse everywhere instantly on the Internet and cargo is routinely airfreighted overnight between continents. It might seem that entirely new rules apply to competition between the world's peoples, and that as a result new powers are emerging — such as Taiwan, Korea, Malaysia, and especially Japan.On reflection, though, we see that the supposedly new rules are just variations on the old ones. Yes, the transistor, invented at Bell Labs in the eastern United States in 1947, leapt 8,000 miles to launch an electronics industry in Japan — but it did not make the shorter leap to found new industries in Zaire or Paraguay. The nations rising to new power are still ones that were incorporated thousands of years ago into the old centers of dominance based on food production, or that have been repopulated by peoples from those centers. Unlike Zaire or Paraguay, Japan and the other new powers were able to exploit the transistor quickly because their populations already had a long history of literacy, metal machinery, and centralized government. The world's two earliest centers of food production, the Fertile Crescent and China, still dominate the modern world, either through their immediate successor states (modern China), or through states situated in neighboring regions influenced early by those two centers (Japan, Korea, Malaysia, and Europe), or through states repopulated or ruled by their overseas emigrants (the United States, Australia, Brazil). Prospects for world dominance of sub-Saharan Africans, Aboriginal Australians, and Native Americans remain dim. The hand of history's course at 8000 b.c. lies heavily on us.other factors relevant to answering Yali's question, cultural factors and influences of individual people loom large. To take the former first, human cultural traits vary greatly around the world. Some of that cultural variation is no doubt a product of environmental variation, and I have discussed many examples in this book. But an important ques-418 •EPILOGUEtion concerns the possible significance of local cultural factors unrelated to the environment. A minor cultural feature may arise for trivial, temporary local reasons, become fixed, and then predispose a society toward more important cultural choices, as is suggested by applications of chaos theory to other fields of science. Such cultural processes are among history's wild cards that would tend to make history unpredictable.As one example, I mentioned in Chapter 13 the QWERTY keyboard for typewriters. It was adopted initially, out of many competing keyboard designs, for trivial specific reasons involving early typewriter construction in America in the 1860s, typewriter salesmanship, a decision in 1882 by a certain Ms. Longley who founded the Shorthand and Typewriter Institute in Cincinnati, and the success of Ms. Longley's star typing pupil Frank McGurrin, who thrashed Ms. Longley's non-QWERTY competitor Louis Taub in a widely publicized typing contest in 1888. The decision could have gone to another keyboard at any of numerous stages between the 1860s and the 1880s; nothing about the American environment favored the QWERTY keyboard over its rivals. Once the decision had been made, though, the QWERTY keyboard became so entrenched that it was also adopted for computer keyboard design a century later. Equally trivial specific reasons, now lost in the remote past, may have lain behind the Sumer-ian adoption of a counting system based on 12 instead of 10 (leading to our modern 60-minute hour, 24-hour day, 12-month year, and 360-degree circle), in contrast to the widespread Mesoamerican counting system based on 20 (leading to its calendar using two concurrent cycles of 260 named days and a 365-day year).Those details of typewriter, clock, and calendar design have not affected the competitive success of the societies adopting them. But it is easy to imagine how they could have. For example, if the QWERTY keyboard of the United States had not been adopted elsewhere in the world as well— say, if Japan or Europe had adopted the much more efficient Dvorak keyboard—that trivial decision in the 19th century might have had big consequences for the competitive position of 20th-century American technology.Similarly, a study of Chinese children suggested that they learn to write more quickly when taught an alphabetic transcription of Chinese sounds (termed pinyin) than when taught traditional Chinese writing, with its thousands of signs. It has been suggested that the latter arose because of their convenience for distinguishing the large numbers of Chinese words possessing differing meanings but the same sounds (homophones). If so,THE FUTURE OF HUMAN HISTORYas Ascience • 419the abundance of homophones in the Chinese language may have had a large impact on the role of literacy in Chinese society, yet it seems unlikely that there was anything in the Chinese environment selecting for a language rich in homophones. Did a linguistic or cultural factor account for the otherwise puzzling failure of complex Andean civilizations to develop writing? Was there anything about India's environment predisposing toward rigid socioeconomic castes, with grave consequences for the development of technology in India? Was there anything about the Chinese environment predisposing toward Confucian philosophy and cultural conservatism, which may also have profoundly affected history? Why was proselytizing religion (Christianity and Islam) a driving force for colonization and conquest among Europeans and West Asians but not among Chinese?These examples illustrate the broad range of questions concerning cultural idiosyncrasies, unrelated to environment and initially of little significance, that might evolve into influential and long-lasting cultural features. Their significance constitutes an important unanswered question. It can best be approached by concentrating attention on historical patterns that remain puzzling after the effects of major environmental factors have been taken into account.what about the effects of idiosyncratic individual people? A familiar modern example is the narrow failure, on July 20, 1944, of the assassination attempt against Hitler and of a simultaneous uprising in Berlin. Both had been planned by Germans who were convinced that the war could not be won and who wanted to seek peace then, at a time when the eastern front between the German and Russian armies still lay mostly within Russia's borders. Hitler was wounded by a time bomb in a briefcase placed under a conference table; he might have been killed if the case had been placed slightly closer to the chair where he was sitting. It is likely that the modern map of Eastern Europe and the Cold War's course would have been significantly different if Hitler had indeed been killed and if World War II had ended then.Less well known but even more fateful was a traffic accident in the summer of 1930, over two years before Hitler's seizure of power in Germany, when a car in which he was riding in the "death seat" (right front passenger seat) collided with a heavy trailer truck. The truck braked just420 •EPILOGUEin time to avoid running over Hitler's car and crushing him. Because of the degree to which Hitler's psychopathology determined Nazi policy and success, the form of an eventual World War II would probably have been quite different if the truck driver had braked one second later.One can think of other individuals whose idiosyncrasies apparently influenced history as did Hitler's: Alexander the Great, Augustus, Buddha, Christ, Lenin, Martin Luther, the Inca emperor Pachacuti, Mohammed, William the Conqueror, and the Zulu king Shaka, to name a few. To what extent did each really change events, as opposed to "just" happening to be the right person in the right place at the right time? At the one extreme is the view of the historian Thomas Carlyle: "Universal history, the history of what man note 11 has accomplished in this world, is at bottom the History of the Great Men who have worked here." At the opposite extreme is the view of the Prussian statesman Otto von Bismarck, who unlike Carlyle had long firsthand experience of polities' inner workings: "The statesman's task is to hear God's footsteps marching through history, and to try to catch on to His coattails as He marches past."Like cultural idiosyncrasies, individual idiosyncrasies throw wild cards into the course of history. They may make history inexplicable in terms of environmental forces, or indeed of any generalizable causes. For the purposes of this book, however, they are scarcely relevant, because even the most ardent proponent of the Great Man theory would find it difficult to interpret history's broadest pattern in terms of a few Great Men. Perhaps Alexander the Great did nudge the course of western Eurasia's already literate, food-producing, iron-equipped states, but he had nothing to do with the fact that western Eurasia already supported literate, food-producing, iron-equipped states at a time when Australia still supported only non-literate hunter-gatherer tribes lacking metal tools. Nevertheless, it remains an open question how wide and lasting the effects of idiosyncratic individuals on history really are.The discipline of history is generally not considered to be a science, but something closer to the humanities. At best, history is classified among the social sciences, of which it rates as the least scientific. While the field of government is often termed "politicaTsciehce""and the Nobel Prize in economics refers to "economic science," history departments rarely if everTHEFUTURE OF HUMAN HISTORY AS A SCIENCE • 421label themselves "Department of Historical Science." Most historians do not think of themselves as scientists and receive little training in acknowledged sciences and their methodologies. The sense that history is nothing more than a mass of details is captured in numerous aphorisms: "History is just one damn fact after another," "History is more or less bunk," "There is no law of history any more than of a kaleidoscope," and so on.One cannot deny that it is more difficult to extract general principles, from studying history than from studying planetary orbits. However, the f difficulties seem to me not fatal. Similar ones apply to other historical subjects whose place among the natural sciences is nevertheless secure, including astronomy, climatology, ecology, evolutionary biology, geology, and paleontology. People's image of science is unfortunately often based on physics and a few other fields with similar methodologies. Scientists in those fields tend to be ignorantly disdainful of fields to which those methodologies are inappropriate and which must therefore seek other methodologies—such as my own research areas of ecology and evolutionary biology. But recall that the word "science" means "knowledge" (from the Latin scire, "to know," and scientia, "knowledge"), to be obtained by whatever methods are most appropriate to the particular field. Hence I have much empathy with students of human history for the difficulties they face.Historical sciences in the broad sense (including astronomy and the like) share many features that set them apart from nonhistorical sciences such as physics, chemistry, and molecular biology. I would single out four: methodology, causation, prediction, and complexity.In physics the chief method for gaining knowledge is the laboratory experiment, by which one manipulates the parameter whose effect is in question, executes parallel control experiments with that parameter held constant, holds other parameters constant throughout, replicates both the experimental manipulation and the control experiment, and obtains quantitative data. This strategy, which also works well in chemistry and molecular biology, is so identified with science in the minds of many people that experimentation is often held to be the essence of the scientific method. But laboratory experimentation can obviously play little or no role in many of the historical sciences. One cannot interrupt galaxy formation, start and stop hurricanes and ice ages, experimentally exterminate grizzly bears in a few national parks, or rerun the course of dinosaur evolution. Instead, one412.• EPILOGUEmust gain knowledge in these historical sciences by other means, such as observation, comparison, and so-called natural experiments (to which I shall return in a moment).Historical sciences are concerned with chains of proximate and ultimate causes. In most of physics and chemistry the concepts of "ultimate cause," "purpose," and "function" are meaningless, yet they are essential to understanding living systems in general and human activities in particular. For instance, an evolutionary biologist studying Arctic hares whose fur color turns from brown in summer to white in winter is not satisfied with identifying the mundane proximate causes of fur color in terms of the fur pigments' molecular structures and biosynthetic pathways. The more important questions involve function (camouflage against predators?) and ultimate cause (natural selection starting with an ancestral hare population with seasonally unchanging fur color?). Similarly, a European historian is not satisfied with describing the condition of Europe in both 1815 and 1918 as having just achieved peace after a costly pan-European war. Understanding the contrasting chains of events leading up to the two peace treaties is essential to understanding why an even more costly pan-European war broke out again within a few decades of 1918 but not of 1815. But chemists do not assign a purpose or function to a collision of two gas molecules, nor do they seek an ultimate cause for the collision.Still another difference between historical and nonhistorical sciences involves prediction. In chemistry and physics the acid test of one's understanding of a system is whether one can successfully predict its future behavior. Again, physicists tend to look down on evolutionary biology and history, because those fields appear to fail this test. In historical sciences, one can provide a posteriori explanations (e.g., why an asteroid impact on Earth 66 million years ago may have driven dinosaurs but not many other species to extinction), but a priori predictions are more difficult (we would be uncertain which species would be driven to extinction if we did not have the actual past event to guide us). However, historians and historical scientists do make and test predictions about what future discoveries of data will show us about past events.The properties of historical systems that complicate attempts at prediction can be described in several alternative ways. One can point out that human societies and dinosaurs are extremely complex, being characterized by an enormous number of independent variables that feed back on each other. As a result, small changes at a lower level of organization can leadTHEFUTURE OF HUMAN HISTORY AS A SCIENCE • 413to emergent changes at a higher level. A typical example is the effect of that one truck driver's braking response, in Hitler's nearly fatal traffic accident of 1930, on the lives of a hundred million people who were killed or wounded in World War II. Although most biologists agree that biological systems are in the end wholly determined by their physical properties and obey the laws of quantum mechanics, the systems' complexity means, for practical purposes that that deterministic causation does not translate into predictability. Knowledge of quantum mechanics does not help one understand why introduced placental predators have exterminated so many Australian marsupial species, or why the Allied Powers rather than the Central Powers won World War I.Each glacier, nebula, hurricane, human society, and biological species, and even each individual and cell of a sexually reproducing species, is unique, because it is influenced by so many variables and made up of so many variable parts. In contrast, for any of the physicist's elementary particles and isotopes and of the chemist's molecules, all individuals of the entity are identical to each other. Hence physicists and chemists can formulate universal deterministic laws at the macroscopic level, but biologists and historians can formulate only statistical trends. With a very high probability of being correct, I can predict that, of the next 1,000 babies born at the University of California Medical Center, where I work, not fewer than 480 or more than 520 will be boys. But I had no means of knowing in advance that my own two children would be boys. Similarly, historians note that tribal societies may have been more likely to develop into chief-doms if the local population was sufficiently large and dense and if there was potential for surplus food production than if that was not the case. But each such local population has its own unique features, with the result that chiefdoms did emerge in the highlands of Mexico, Guatemala, Peru, and Madagascar, but not in those of New Guinea or Guadalcanal.Still another way of describing the complexity and unpredictability of historical systems, despite their ultimate determinacy, is to note that long chains of causation may separate final effects from ultimate causes lying outside the domain of that field of science. For example, the dinosaurs may have been exterminated by the impact of an asteroid whose orbit was completely determined by the laws of classical mechanics. But if there had been any paleontologists living 67 million years ago, they could not have predicted the dinosaurs' imminent demise, because asteroids belong to a field of science otherwise remote from dinosaur biology. Similarly, the Lit-4 Z 4 ' EPILOGUEtle Ice Age of a.d. 1300-1500 contributed to the extinction of the Greenland Norse, but no historian, and probably not even a modern climatoiogist, could have predicted the Little Ice Age.Thus, the difficulties historians face in establishing cause-and-effect relations in the history of human societies are broadly similar to the difficulties facing astronomers, climatologists, ecologists, evolutionary biologists, geologists, and paleontologists. To varying degrees, each of these fields is plagued by the impossibility of performing replicated, controlled experimental interventions, the complexity arising from enormous numbers of variables, the resulting uniqueness of each system, the consequent impossibility of formulating universal laws, and the difficulties of predicting emergent properties and future behavior. Prediction in history, as in other historical sciences, is most feasible on large spatial scales and over long times, when the unique features of millions of small-scale brief events become averaged out. Just as I could predict the sex ratio of the next 1,000 newborns but not the sexes of my own two children, the historian can recognize factors that made inevitable the broad outcome of the collision between American and Eurasian societies after 13,000 years of separate developments, but not the outcome of the 1960 U.S. presidential election. The details of which candidate said what during a single televised debate in October 1960 could have given the electoral victory to Nixon instead of to Kennedy, but no details of who said what could have blocked the European conquest of Native Americans.How can students of human history profit from the experience of scientists in other historical sciences? A methodology that has proved useful involves the comparative method and so-called natural experiments. While neither astronomers studying galaxy formation nor human historians can manipulate their systems in controlled laboratory experiments, they both can take advantage of natural experiments, by comparing systems differing in the presence or absence (or in the strong or weak effect) of some putative causative factor. For example, epidemiologists, forbidden to feed large amounts of salt to people experimentally, have still been able to identify effects of high salt intake by comparing groups of humans who already differ greatly in their salt intake; and cultural anthropologists, unable to provide human groups experimentally with varying resource abundances for many centuries, still study long-term effects of resource abundance ofTHEFUTURE OF HUMAN HISTORY AS A SCIENCE • 415human societies by comparing recent Polynesian populations living on islands differing naturally in resource abundance. The student of human history can draw on many more natural experiments than just comparisons among the five inhabited continents. Comparisons can also utilize large islands that have developed complex societies in a considerable degree of isolation (such as Japan, Madagascar, Native American Hispan-iola New Guinea, Hawaii, and many others), as well as societies on hundreds of smaller islands and regional societies within each of the continents.Natural experiments in any field, whether in ecology or human history, are inherently open to potential methodological criticisms. Those include confounding effects of natural variation in additional variables besides the one of interest, as well as problems in inferring chains of causation from observed correlations between variables. Such methodological problems have been discussed in great detail for some of the historical sciences. In particular, epidemiology, the science of drawing inferences about human diseases by comparing groups of people (often by retrospective historical studies), has for a long time successfully employed formalized procedures for dealing with problems similar to those facing historians of human societies. Ecologists have also devoted much attention to the problems of natural experiments, a methodology to which they must resort in many cases where direct experimental interventions to manipulate relevant ecological variables would be immoral, illegal, or impossible. Evolutionary biologists have recently been developing ever more sophisticated methods for drawing conclusions from comparisons of different plants and animals of known evolutionary histories.In short, I acknowledge that it is much more difficult to understand human history than to understand problems in fields of science where history is unimportant and where fewer individual variables operate. Nevertheless, successful methodologies for analyzing historical problems have been worked out in several fields. As a result, the histories of dinosaurs, nebulas, and glaciers are generally acknowledged to belong to fields of science rather than to the humanities. But introspection gives us far more insight into the ways of other humans than into those of dinosaurs. I am thus optimistic that historical studies of human societies can be pursued as scientifically as studies of dinosaurs—and with profit to our own societyay> by teaching us what shaped the modern world, and what might shape our future.acknowledgmentsIt IS A PLEASURE FOR ME TO ACKNOWLEDGE THE CONTRIBUtions of many people to this book. My teachers at Roxbury Latin School introduced me to the fascination of history. My great debt to my many New Guinea friends will be obvious from the frequency with which I cite their experiences. I owe an equally great debt (and absolution from responsibility for my errors) to my many scientist friends and professional colleagues, who patiently explained the subtleties of their subjects and read my drafts. In particular, Peter Bellwood, Kent Flannery, Patrick Kirch, and my wife, Marie Cohen, read the whole manuscript, and Charles Heiser, Jr., David Keightley, Bruce Smith, Richard Yarnell, and Daniel Zohary each read several chapters. Earlier versions of several of the chapters appeared as articles in Discover magazine and in Natural History magazine. The National Geographic Society, World Wildlife Fund, and University of California at Los Angeles supported my fieldwork on Pacific islands. I have been fortunate to have John Brockman and Katinka Matson as my agents, Lori Iversen and Lori Rosen as my research assistants and secretaries, Ellen Modecki as my illustrator, and as my editors Donald Lamm at W. W. Norton, Neil Belton and Will Sulkin at Jonathan Cape, Willi Kohler at Fischer, Marc Zabludoff and Mark Wheeler and Polly Shulman at Discover, and Ellen Goldensohn and Alan Ternes at NaturalHistory.FURTHER READINGSTHESE SUGGESTIONS ARE FOR THOSE INTERESTED IN READing further. Hence, in addition to key books and papers, I have favored references that provide comprehensive listings of the earlier literature. A journal title (in italics) is followed by the volume number, followed after a colon by the first and last page numbers, and then the year of publication in parentheses.PrologueAmong references relevant to most chapters of this book is an enormous compendium of human gene frequencies entitled The History and Geography of Human Genes, by L. Luca Cavalli-Sforza, Paolo Menozzi, and Alberto Piazza (Princeton: Princeton University Press, 1994). This remarkable book approximates a history of everything about everybody, because the authors begin their accounts of each continent with a convenient summary of the continent's geography, ecology, and environment, followed by the Prehistory, history, languages, physical anthropology, and culture of its Peoples. L. Luca Cavalli-Sforza and Francisco Cavalli-Sforza, The GreatHuman Diaspora* (Reading, Mass.: Addison-Wesley, 1995), covers similar43o' FURTHER READINGSmaterial but is written for the general reader rather than for specialists.Another convenient source is a series of five volumes entitled The Illustrated History of Humankind, ed. Goran Burenhult (San Francisco: HarperCollins, 1993-94). The five individual volumes in this series are entitled, respectively, The First Humans, People of the Stone Age, Old World Civilizations, New World and Pacific Civilizations, and Traditional Peoples Today.Several series of volumes published by Cambridge University Press (Cambridge, England, various dates) provide histories of particular regions or eras. One series consists of books entitled The Cambridge History of note 12, where X is variously Africa, Early Inner Asia, China, India, Iran, Islam, Japan, Latin America, Poland, and Southeast Asia. Another series is The Cambridge Encyclopedia of note 13, where X is variously Africa, China, Japan, Latin America and the Caribbean, Russia and the former Soviet Union, Australia, the Middle East and North Africa, and India, Pakistan, and adjacent countries. Still other series include The CambridgeAncient History, The Cambridge Medieval History, The Cambridge Modern History, The Cambridge Economic History of Europe, and The Cambridge Economic History of India.Three encyclopedic accounts of the world's languages are Barbara Grimes, Ethnologue: Languages of the World, 13th ed. (Dallas: Summer Institute of Linguistics, 1996), Merritt Ruhlen, A Guide to the World's Languages, (Stanford: Stanford University Press, 1987), and C. F. Voegelin and F. M. Voegelin, Classification and Index of the World's Languages (New York: Elsevier, 1977).Among large-scale comparative histories, Arnold Toynbee, A Study ofHistory, 12 vols. (London: Oxford University Press, 1934-54), stands out. An excellent history of Eurasian civilization, especially western Eurasian civilization, is William McNeill, The Rise of the West (Chicago: University of Chicago Press, 1991). The same author's A World History (New York: Oxford University Press, 1979), despite its title, also maintains a focus on western Eurasian civilization, as does V. Gordon Childe, What Happened in History, rev. ed. (Baltimore: Penguin Books, 1954). Another comparative history with a focus on western Eurasia, C. D. Darlington, The Evotution of Man and Society (New York: Simon and Schuster, 1969), is by a biologist who recognizes some of the same links between continental history and domestication that I discuss. Two books by Alfred Crosby aFURTHERREADINGS • 431distinguished studies of the European overseas expansion with emphasis on its accompanying plants, animals, and germs: The ColumbianExchange: Biological Consequences of 1492 (Westport, Conn.: Greenwood, 1972) and Ecological Imperialism: The Biological Expansion of Europe, 900-1900 (Cambridge: Cambridge University Press, 1986). Marvin Harris, Cannibals and Kings: The Origins of Cultures (New York: Vintage Books, 1978), and Marshall Sahlins and Elman Service, eds., Evolution and Culture (Ann Arbor: University of Michigan Press, 1960), are comparative histories from the perspective of cultural anthropologists. Ellen Semple, Influences of Geographic Environment (New York: Holt, 1911), is an example of earlier efforts to study geographic influences on human societies. Other important historical studies are listed under further readings for the Epilogue. My book The Third Chimpanzee (New York: HarperCollins, 1992), especially its chapter 14, on the comparative histories of Eurasia and the Americas, provided the starting point for my thinking about the present book.The best-known or most notorious recent entrant into the debate about group differences in intelligence is Richard Herrnstein and Charles Murray, The Bell Curve: Intelligence and Class Structure in American Life (New York: Free Press, 1994).Chapter 1Excellent books about early human evolution include Richard Klein, The Human Career (Chicago: University of Chicago Press, 1989), Roger Lewin, Bones of Contention (New York: Simon and Schuster, 1989), Paul Mellars and Chris Stringer, eds., The Human Revolution: Behavioural andBiological Perspectives on the Origins of Modern Humans (Edinburgh: Edinburgh University Press, 1989), Richard Leakey and Roger Lewin, Origins Reconsidered (New York: Doubleday, 1992), D. Tab Rasmussen, ed., The Origin and Evolution of Humans and Humanness (Boston: Jones and Bartlett, 1993), Matthew Nitecki and Doris Nitecki, eds., Origins of Anatomically Modern Humans (New York: Plenum, 1994), and Chris Stringer and Robin McKie, African Exodus (London: Jonathan Cape, 1996). Three Popular books dealing specifically with the Neanderthals are Christopher Stringer and dive Gamble, In Search of the Neanderthals (New York:4 3 z 'FURTHERREADINGSThames and Hudson, 1993), Erik Trinkaus and Pat Shipman, The Neandertals (New York: Knopf, 1993), and lan Tanersall, The Last Neanderthal (New York: Macmillan, 1995).Genetic evidence of human origins is the subject of the two books by L. Luca Cavalli-Sforza et al. already cited under the Prologue, and of chapter 1 of my book The Third Chimpanzee. Two technical papers with recent advances in the genetic evidence are J. L. Mountain and L. L. Cavalli-Sforza, "Inference of human evolution through cladistic analysis of nuclear DNA restriction polymorphism," Proceedings of the NationalAcademy of Sciences 91:6515-19 (1994), and D. B. Goldstein et al., "Genetic absolute dating based on microsatellites and the origin of modern humans," ibid. 92:6723-27 (1995).References to the human colonization of Australia, New Guinea, and the Bismarck and Solomon Archipelagoes, and to extinctions of large animals there, are listed under further readings for Chapter 15. In particular, Tim Flannery, The Future Eaters (New York: Braziller, 1995), discusses those subjects in clear, understandable terms and explains the problems with claims of very recent survival of extinct big Australian mammals.The standard text on Late Pleistocene and Recent extinctions of large animals is Paul Martin and Richard Klein, eds., Quaternary Extinctions (Tucson: University of Arizona Press, 1984). More recent updates are Richard Klein, "The impact of early people on the environment: The case of large mammal extinctions," pp. 13-34 in J. E. Jacobsen and J. Firor, Human Impact on the Environment (Boulder, Colo.: Westview Press, 1992), and Anthony Stuart, "Mammalian extinctions in the Late Pleistocene of Northern Eurasia and North America," Biological Renews 66:453-62 (1991). David Steadman summarizes recent evidence that extinction waves accompanied human settlement of Pacific islands in his paper "Prehistoric extinctions of Pacific island birds: Biodiversity meets zooarchaeology," Science 267:1123-31 (1995).Popular accounts of the settlement of the Americas, the accompanying, extinctions of large mammals, and the resulting controversies are Brian .|| Fagan, The Great Journey: The Peopling of Ancient America (New York: Thames and Hudson, 1987), and chapter 18 of my book The Third Chimpanzee, both of which provide many other references. Ronald Carlisle, ed., ;..| Americans before Columbus: Ice-Age Origins (Pittsburgh: University of Pittsburgh, 1988), includes a chapter by J. M. Adovasio and his colleague* on pre-Clovis evidence at the Meadowcroft site. Papers by C. Vane* JFURTHERREADINGS • 433Haynes, Jr., an expert on the Clovis horizon and reported pre-Clovis sites, include "Contributions of radiocarbon dating to the geochronology of the peopling of the New World," pp. 354-74 in R. E. Taylor, A. Long, and r. S. Kra, eds., Radiocarbon after Four Decades (New York: Springer, 1992), and "Clovis-Folson geochronology and climate change," pp. 219-36 in Olga Soffer and N. D. Praslov, eds., From Kostenki to Clovis: UpperPaleolithic Paleo-Indian Adaptations (New York: Plenum, 1993). Pre-Clovis claims for the Pedra Furada site are argued by N. Guidon and G. Deli-brias, "Carbon-14 dates point to man in the Americas 32,000 years ago," Nature 321:769-71 (1986), and David Meltzer et al., "On a Pleistocene human occupation at Pedra Furada, Brazil," Antiquity 68:695-714 (1994). Other publications relevant to the pre-Clovis debate include T. D. Dillehay et al., "Earliest hunters and gatherers of South America," Journalof World Prehistory 6:145-204 (1992), T. D. Dillehay, Monte Verde: ALate Pleistocene Site in Chile (Washington, D.C.; Smithsonian Institution Press, 1989), T. D. Dillehay and D. J. Meltzer, eds., The First Americans:Search and Research (Boca Raton: CRC Press, 1991), Thomas Lynch "Glacial-age man in South America?—a critical review," American Antiquity 55:12-36 (1990), John Hoffecker et al., "The colonization of Beringia and the peopling of the New World," Science 259:46-53 (1993), and A. C. Roosevelt et al., "Paleoindian cave dwellers in the Amazon: The peopling of the Americas," Science 272:373-84 (1996).Chapter 2Two outstanding books explicitly concerned with cultural differences among Polynesian islands are Patrick Kirch, The Evolution of the Polynesian Chiefdoms (Cambridge: Cambridge University Press, 1984), and the same author's The Wet and the Dry (Chicago: University of Chicago Press, 1994). Much of Peter Bellwood's The Polynesians, rev. ed. (London: Thames and Hudson, 1987), also deals with this problem. Notable books dealing with specific Polynesian islands include Michael King, Moriori (Auckland: Penguin, 1989), on the Chatham Islands, Patrick Kirch, Feathered Gods and Fishhooks (Honolulu: University of Hawaii Press, 1985), on Hawaii, Patrick Kirch and Marshall Sahlins, Anahulu (Chicago: University of Chicago Press, 1992), also on Hawaii, Jo Anne Van Tilburg, hland (Washington, D.C.: Smithsonian Institution Press, 1994),434* FURTHER READINGSand Paul Bahn and John Flenley, Easter Island, Earth Island (London: Thames and Hudson, 1992).Chapter 3My account of Pizarro's capture of Atahuallpa combines the eyewitness accounts by Francisco Pizarro's brothers Hernando Pizarro and Pedro Pizarro and by Pizarro's companions Miguel de Estete, Cristobal de Mena, Ruiz de Arce, and Francisco de Xerez. The accounts by Hernando Pizarro, Miguel de Estete, and Francisco de Xerez have been translated by Clements Markham, Reports on the Discovery of Peru, Hakluyt Society, 1st ser., vol. 47 (New York, 1872); Pedro Pizarro's account, by Philip Means, Relation of the Discovery and Conquest of the Kingdoms of Peru (New York: Cortes Society, 1921); and Cristobal de Mena's account, by Joseph Sinclair, The Conquest of Peru, as Recorded by a Member of the PizarroExpedition (New York, 1929). The account by Ruiz de Arce was reprinted in Boletin de la Real Academia de Historia (Madrid) 102:327-84 (1933). John Hemming's excellent The Conquest of the Incas (San Diego: Harcourt Brace Jovanovich, 1970) gives a full account of the capture and indeed of the whole conquest, with an extensive bibliography. A 19th-century account of the conquest, William H. Prescott's History of the Conquest of Peru (New York, 1847), is still highly readable and ranks among the classics of historical writing. Corresponding modern and classic 19th-century accounts of the Spanish conquest of the Aztecs are, respectively, Hugh Thomas, Conquest: Montezuma, Cortes, and the Fall of Old Mexico (New York: Simon and Schuster, 1993), and William Prescott, Historyof the Conquest of Mexico (New York, 1843). Contemporary eyewitness accounts of the conquest of the Aztecs were written by Cortes himself (reprinted as Hernando Cortes, Five Letters of Cortes to the Emperornote 14) and by many of Cortes's companions (reprinted in Patricia de Fuentes, ed., The Conquistadorsnote 15).Chapters 4-10References for these seven chapters on food production will be combined, since many of the references apply to more than one of them.FURTHERREADINGS • 435Five important sources, all of them excellent and fact-filled, address the question how food production evolved from the hunter-gatherer lifestyle: Kent Flannery, "The origins of agriculture," Annual Reviews of Anthropology 2:271-310 (1973); Jack Harlan, Crops and Man, 2nd ed. (Madison Wis.: American Society of Agronomy, 1992); Richard MacNeish, The Origins of Agriculture and Settled Life (Norman: University of Oklahoma Press, 1992); David Rindos, The Origins of Agriculture: An EvolutionaryPerspective (San Diego: Academic Press, 1984); and Bruce Smith, TheEmergence of Agriculture (New York: Scientific American Library, 1995). Notable older references about food production in general include two multi-author volumes: Peter Ucko and G. W. Dimbleby, eds., The Domestication and Exploitation of Plants and Animals (Chicago: Aldine, 1969), and Charles Reed, ed., Origins of Agriculture (The Hague: Mouton, 1977). Carl Sauer, Agricultural Origins and Dispersals (New York: American Geographical Society, 1952), is a classic early comparison of Old World and New World food production, while Erich Isaac, Geography ofDomestication (Englewood Cliffs, N. J.: Prentice-Hall, 1970), addresses the questions of where, when, and how regarding plant and animal domestication.Among references specifically about plant domestication, Daniel Zohary and Maria Hopf, Domestication of Plants in the Old World, 2nd ed. (Oxford: Oxford University Press, 1993), stands out. It provides the most detailed account of plant domestication available for any part of the world. For each significant crop grown in western Eurasia, the book summarizes archaeological and genetic evidence about its domestication and subsequent spread.Among important multi-author books on plant domestication are C. Wesley Cowan and Patty Jo Watson, eds., The Origins of Agriculture (Washington, D.C.: Smithsonian Institution Press, 1992), David Harris and Gordon Hillman, eds., Foraging and Farming: The Evolution of PlantExploitation (London: Unwin Hyman, 1989), and C. Barigozzi, ed., TheOrigin and Domestication of Cultivated Plants (Amsterdam: Elsevier, 1986). Two engaging popular accounts of plant domestication by Charles Heiser, Jr., are Seed to Civilization: The Story of food, 3rd ed. (Cambridge: Harvard University Press, 1990), and Of Plants and People (Norman: University of Oklahoma Press, 1985). J. Smartt and N. W. Simmonds, ed., Evolution of Crop Plants, 2nd ed. (London: Longman, j) is the standard reference volume summarizing information about or the world's major crops and many minor ones. Three excellent4 3 6 ' FURTHER READINGSpapers describe the changes that evolve automatically in wild plants under human cultivation: Mark Blunder and Roger Byrne, "The ecological genetics of domestication and the origins of agriculture," Current Anthropology 32:23-54 (1991); Charles Heiser, Jr., "Aspects of unconscious selection and the evolution of domesticated plants," Euphytica 37:77-81 (1988); and Daniel Zohary, "Modes of evolution in plants under domestication," in W. F. Grant, ed., Plant Biosystematics (Montreal: Academic Press, 1984). Mark Blumler, "Independent inventionism and recent genetic evidence on plant domestication," Economic Botany 46:98-111 (1992), evaluates the evidence for multiple domestications of the same wild plant species, as opposed to single origins followed by spread.Among writings of general interest in connection with animal domestication, the standard encyclopedic reference work to the world's wild mammals is Ronald Nowak, ed., Walker's Mammals of the World, 5th ed. (Baltimore: Johns Hopkins University Press, 1991). Juliet Glutton-Brock, Domesticated Animals from Early Times (London: British Museum note 16, 1981), gives an excellent summary of all important domesticated mammals. I. L. Mason, ed., Evolution of Domesticated Animals (London: Longman, 1984), is a multi-author volume discussing each significant domesticated animal individually. Simon Davis, The Archaeology of Animals (New Haven: Yale University Press, 1987), provides an excellent account of what can be learned from mammal bones in archaeological sites. Juliet Glutton-Brock, ed., The Walking Larder (London: Unwin-Hyman, 1989), presents 31 papers about how humans have domesticated, herded, hunted, and been hunted by animals around the world. A comprehensive book in German about domesticated animals is Wolf Herre and Manfred Rohrs, Haustiere zoologisch gesehen (Stuttgart: Fischer, 1990). Stephen Budiansky, The Covenant of the Wild (New York: William Morrow, 1992), is a popular account of how animal domestication evolved automatically from relationships between humans and animals. An important paper on how domestic animals became used for plowing, transport, wool, and milk is Andrew Sheratt, "Plough and pastoralisnv. Aspects of the secondary products revolution," pp. 261-305 in lan Hod-der et al., eds., Pattern of the Past (Cambridge: Cambridge University Press, 1981).Accounts of food production in particular areas of the world include a deliciously detailed mini-encyclopedia of Roman agricultural practices, Pliny, Natural History, vols. 17-19 (Latin text side-by-side with English;FURTHERREADINGS • 437translation in the Loeb Classical Library edition note 17); Albert Ammerman and L. L. Cavalli-Sforza, TheNeolithic Transition and the Genetics of Populations in Europe (Princeton: Princeton University Press, 1984), analyzing the spread of food production from the Fertile Crescent westward across Europe; Graeme Barker, Prehistoric Fanning in Europe (Cambridge: Cambridge University Press 1985), and Alasdair Whittle, Neolithic Europe: A Survey (Cambridge: Cambridge University Press, 1985), for Europe; Donald Henry, from Foraging to Agriculture: The Levant at the End of the Ice Age (Philadelphia: University of Pennsylvania Press, 1989), for the lands bordering the eastern shore of the Mediterranean; and D. E. Yen, "Domestication: Lessons from New Guinea," pp. 558-69 in Andrew Pawley, ed., Man anda Half (Auckland: Polynesian Society, 1991), for New Guinea. Edward Schafer, The Golden Peaches of Samarkand (Berkeley: University of California Press, 1963), describes the animals, plants, and other things imported into China during the T'ang dynasty.The following are accounts of plant domestication and crops in specific parts of the world. For Europe and the Fertile Crescent: Willem van Zeist et al., eds., Progress in Old World Falaeoethnobotany (Rotterdam: Bal-kema, 1991), and Jane Renfrew, Paleoethnobotany (London: Methuen, 1973). For the Harappan civilization of the Indus Valley, and for the Indian subcontinent in general: Steven Weber, Plants and Harappan Subsistence (New Delhi: American Institute of Indian Studies, 1991). For New World crops: Charles Heiser, Jr., "New perspectives on the origin and evolution of New World domesticated plants: Summary," Economic Botany 44(3 suppl.):! 11-16 (1990), and the same author's "Origins of some cultivated New World plants," Annual Reviews of Ecology and Systematics 10:309-26 (1979). For a Mexican site that may document the transition from hunting-gathering to early agriculture in Mesoamerica: Kent Flan-nery, ed., Guild Naquitz (New York: Academic Press, 1986). For an account of crops grown in the Andes during Inca times, and their potential uses today: National Research Council, Lost Crops of the Incas (Washington, D.C.: National Academy Press, 1989). For plant domestication in the eastern and / or southwestern United States: Bruce Smith "Origins of agriculture in eastern North America," Science 246:1566-71 (1989); William Keegan, ed., Emergent Horticultural Economies of the Eastern Woodlands (Carbondale: Southern Illinois University, 1987); Richard Ford, ed., Pre-tstonc Food Production in North America (Ann Arbor: University of4 3 8 "FURTHERREADINGSMichigan Museum of Anthropology, 1985); and R. G. Matson, The Origins of Southwestern Agriculture (Tucson: University of Arizona Press, 1991). Bruce Smith, "The origins of agriculture in the Americas," Evolutionary Anthropology 3:174-84 (1995), discusses the revisionist view, based on accelerator mass spectrometry dating of very small plant samples, that the origins of agriculture in the Americas were much more recent than previously believed.The following are accounts of animal domestication and livestock in specific parts of the world. For central and eastern Europe: S. Bok6nyi, History of Domestic Mammals in Central and Eastern Europe (Budapest: Akademiai Kiado, 1974). For Africa: Andrew Smith, Pastoralism in Africa (London: Hurst, 1992). For the Andes: Elizabeth Wing, "Domestication of Andean mammals," pp. 246-64 in F. Vuilleumier and M. Monasterio, eds., High Altitude Tropical Biogeography (Oxford: Oxford University Press, 1986).References on specific important crops include the following. Thomas Sodestrom et al., eds,, Grass Systematics and Evolution (Washington, D.C.: Smithsonian Institution Press, 1987), is a comprehensive multi-author account of grasses, the plant group that gave rise to our cereals, now the world's most important crops. Hugh Iltis, "From teosinte to maize: The catastrophic sexual transmutation," Science 222:886-94 (1983), gives an account of the drastic changes in reproductive biology involved in the evolution of corn from teosinte, its wild ancestor. Yan Wenming, "China's earliest rice agricultural remains," Indo-Pacific Prehistory Association Bulletin 10:118-26 (1991), discusses early rice domestication in South China. Two books by Charles Heiser, Jr., are popular accounts of particular crops: The Sunflower (Norman: University of Oklahoma Press, 1976) and The Gourd Book (Norman: University of Oklahoma Press, 1979).Many papers or books are devoted to accounts of particular domesticated animal species. R. T. Loftus et al., "Evidence for two independent domestications of cattle," Proceedings of the National Academy of Sci~ences U.S.A. 91:2757-61 (1994), uses evidence from mitochondrial DNA to demonstrate that cattle were domesticated independently in western Eurasia and in the Indian subcontinent. For horses: Juliet Glutton-Brock, Horse Power (Cambridge: Harvard University Press, 1992), Richard Meadow and Hans-Peter Uerpmann, eds., Equids in the Ancient World (Wiesbaden: Reichert, 1986), Matthew J. Kust, Man and Horse in HistoryFURTHERREADINGS • 439(Alexandria, Va.: Plutarch Press, 1983), and Robin Law, The Horse in West African History (Oxford: Oxford University Press, 1980). For pigs: Colin Groves, Ancestors for the Pigs: Taxonomy and Phylogeny of the Genus Sus (Technical Bulletin no. 3, Department of Prehistory, Research School of Pacific Studies, Australian National University note 18). For llamas: Kent Flannery, Joyce Marcus, and Robert Reynolds, The Flocks ofthe Wamani (San Diego: Academic Press, 1989). For dogs: Stanley Olsen, Origins of the Domestic Dog (Tucson: University of Arizona Press, 1985). John Varner and Jeannette Varner, Dogs of the Conquest (Norman: University of Oklahoma Press, 1983), describes the Spaniards' use of dogs as military weapons to kill Indians during the Spanish conquests of the Amer-icas. Clive Spinnage, The Natural History of Antelopes (New York: Facts on File, 1986), gives an account of the biology of antelopes, and hence a starting point for trying to understand why none of these seemingly obvious candidates for domestication was actually domesticated. Derek Good-win, Domestic Birds (London: Museum Press, 1965), summarizes the bird species that have been domesticated, and R. A. Donkin, The Muscovy Duck Cairina moschata domestica (Rotterdam: Balkema, 1989), discusses one of the sole two bird species domesticated in the New World.Finally, the complexities of calibrating radiocarbon dates are discussed by G. W. Pearson, "How to cope with calibration," Antiquity 61:98-103 (1987), R. E. Taylor, eds., Radiocarbon after Four Decades: An Interdisciplinary Perspective (New York: Springer, 1992), M. Stuiver et al., "Calibration," Radiocarbon 35:1-244 (1993), S. Bowman "Using radiocarbon: An update," Antiquity 68:838-43 (1994), and R. E. Taylor, M. Stuiver, and C. Vance Haynes, Jr., "Calibration of the Late Pleistocene radiocarbon time scale: Clovis and Folsom age estimates," Antiquity vol. 70 (1996).Chapter 11For a gripping account of the impact of disease on a human population, nothing can match Thucydides' account of the plague of Athens, in bookof his Peloponnesian War (available in many translations).1 hree classic accounts of disease in history are Hans Zinsser, Rats, Lice,and History (Boston: Little, Brown, 1935), Geddes Smith, A Plague on Us (New York: Commonwealth Fund, 1941), and William McNeill, Plagues44o' FURTHER READINGSand Peoples (Garden City, N.Y.: Doubleday, 1976). The last book, written by a distinguished historian rather than by a physician, has been especially influential in bringing historians to recognize the impacts of disease, as have been the two books by Alfred Crosby listed under the further readings for the Prologue.Friedrich Vogel and Arno Motulsky, Human Genetics, 2nd ed. (Berlin: Springer, 1986), the standard textbook on human genetics, is a convenient reference for natural selection of human populations by disease, and for the development of genetic resistance against specific diseases. Roy Ander-son and Robert May, Infectious Diseases of Humans (Oxford: Oxford University Press, 1992), is a clear mathematical treatment of disease dynamics, transmission, and epidemiology. MacFarlane Burnet, NaturalHistory of Infectious Disease (Cambridge: Cambridge University Press, 1953), is a classic by a distinguished medical researcher, while Arno Kar-len, Man and Microbes (New York: Putnam, 1995), is a recent popular account.Books and articles specifically concerned with the evolution of human infectious diseases include Aidan Cockburn, Infectious Diseases: Their Evolution and Eradication (Springfield, 111.: Thomas, 1967); the same author's "Where did our infectious diseases come from?" pp. 103-13 in Health and Disease in Tribal Societies, CIBA Foundation Symposium, no. 49 (Amsterdam: Elsevier, 1977); George Williams and Randolph Nesse, "The dawn of Darwinian medicine," Quarterly Reviews of Biology 66:1-62 (1991); and Paul Ewald, Evolution of Infectious Disease (New York: Oxford University Press, 1994).Francis Black, "Infectious diseases in primitive societies," Science 187:515-18 (1975), discusses the differences between endemic and acute diseases in their impact on, and maintenance in, small isolated societies. Frank Fenner, "Myxoma virus and Oryctolagus cuniculus: Two colonizing species," pp. 485-501 in H. G. Baker and G. L. Stebbins, eds., Geneticsof Colonizing Species (New York: Academic Press, 1965), describes the spread and evolution of Myxoma virus among Australian rabbits. Peter Panum, Observations Made during the Epidemic of Measles on the FaroeIslands in the Year 1846 (New York: American Public Health Association, 1940), illustrates how the arrival of an acute epidemic disease in an isolated nonresistant population quickly kills or immunizes the whole population. Francis Black, "Measles endemicity in insular populations: Critical community size and its evolutionary implication," Journal of TheoreticalFURTHERREADINGS – 441Biology 11:207-11 (1966), uses such measles epidemics to calculate the minimum size of population required to maintain measles. Andrew Dob-son, "The population biology of parasite-induced changes in host behavior," Quarterly Reviews of Biology 63:139-65 (1988), discusses how parasites enhance their own transmission by changing the behavior of their host. Aidan Cockburn and Eve Cockburn, eds., Mummies, Diseases, andAncient Cultures (Cambridge: Cambridge University Press, 1983), illustrates what can be learned from mummies about past impacts of diseases.As for accounts of disease impacts on previously unexposed populations, Henry Dobyns, Their Number Became Thinned (Knoxville: University of Tennessee Press, 1983), marshals evidence for the view that European-introduced diseases killed up to 95 percent of all Native Americans. Subsequent books or articles arguing that controversial thesis include John Verano and Douglas Ubelaker, eds., Disease and Demography in theAmericas (Washington, D.C.: Smithsonian Institution Press, 1992); Ann Ramenofsky, Vectors of Death (Albuquerque: University of New Mexico Press, 1987); Russell Thornton, American Indian Holocaust and Survival (Norman: University of Oklahoma Press, 1987); and Dean Snow, "Microchronology and demographic evidence relating to the size of the pre-Columbian North American Indian population," Science 268:1601-4 (1995). Two accounts of depopulation caused by European-introduced diseases among Hawaii's Polynesian population are David Stannard, Before the Horror: The Population of Hawaii on the Eve of Western Contact (Honolulu: University of Hawaii Press, 1989), and O. A. Bushnell, The Gifts of Civilization: Germs and Genocide in Hawaii (Honolulu: University of Hawaii Press, 1993). The near-extermination of the Sadlermiut Eskimos by a dysentery epidemic in the winter of 1902-3 is described by Susan Rowley, "The Sadlermiut: Mysterious or misunderstood?" pp. 361-84 in David Morrison and Jean-Luc Pilon, eds., Threads of Arctic Prehistory (Hull: Canadian Museum of Civilization, 1994). The reverse phenomenon, of European deaths due to diseases encountered overseas, is discussed by Philip Curtin, Death by Migration: Europe's Encounter withthe Tropical World in the 19th Century (Cambridge: Cambridge University Press, 1989).Among accounts of specific diseases, Stephen Morse, ed., EmergingViruses (New York: Oxford University Press, 1993), contains many valuable chapters on "new" viral diseases of humans; so does Mary Wilson et al., eds., Disease in Evolution, Annals of the New York Academy of Sci-4 4 2, •FURTHERreadingsences, vol. 740 (New York, 1995). References for other diseases include the following. For bubonic plague: Colin McEvedy, "Bubonic plague," Scientific American 258(2):118-23 (1988). For cholera: Norman Longmate King Cholera (London: Hamish Hamilton, 1966). For influenza: Edwin Kilbourne, Influenza (New York: Plenum, 1987), and Robert Webster et al., "Evolution and ecology of influenza A viruses," Microbiological Reviews 56:152-79 (1992). For Lyme disease: Alan Barbour and Durland Fish, "The biological and social phenomenon of Lyme disease," Science 260:1610-16 (1993), and Allan Steere, "Lyme disease: A growing threat to urban populations," Proceedings of the National Academy of Sciences 91:2378-83(1994).For the evolutionary relationships of human malarial parasites: Thomas McCutchan et al., "Evolutionary relatedness of Plasmodium species as 3 determined by the structure of DNA," Science 225:808-11 (1984), and A. P. Waters et al., "'Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts," Proceedings ofthe National Academy of Sciences 88:3140-44 (1991). For the evolutionary relationships of measles virus: E. Norrby et al., "Is rinderpest virus the archevirus of the Morbillivirus genus?" Intervirology 23:228-32 (1985), and Keith Murray et al., "A morbillivirus that caused fatal disease in horses and humans," Science 268:94-97 (1995). For pertussis, also known as whooping cough: R. Gross et al., "Genetics of pertussis toxin," Molecular Microbiology 3:119-24 (1989). For smallpox: Donald Hopkins, Princes and Peasants: Smallpox in History (Chicago: University of Chicago Press, 1983); F. Vogel and M. R. Chakravartti, "ABO blood groups and smallpox in a rural population of West Bengal and Bihar (India)," Human Genetics 3:166-80 (1966); and my article "A pox upon our genes," Natural History 99(2):26-30 (1990). For monkeypox, a disease related to smallpox: Zdenek Jezek and Frank Fenner, Human Monkeypox (Basel: Karger, 1988). For syphilis: Claude Quetel, History of Syphilis (Baltimore: Johns Hopkins University Press, 1990). For tuberculosis: Guy Youmans, Tuberculosis (Philadelphia: Saunders, 1979). For the claim that human tuberculosis was present in Native Americans before Columbus's arrival: in favor, Wilmar Salo et al., "Identification of Mycobacteriutn tuberculosis DNA in a pre-Columbian Peruvian mummy," Proceedings ofthe National Academy of Sciences 91:2091-94 (1994); opposed, William Stead et al., "When did Mycobacterium tuberculosis infection first occur 10FURTHERREADINGS • 443the New World?" American Journal of Respiratory Critical Care Medicine 151:1267-68 (1995).Chapter 12Books providing general accounts of writing and of particular writing systems include David Diringer, Writing (London: Thames and Hudson, 1982), I. J– Gelb, A Study of Writing* 2nd ed. (Chicago: University of Chicago Press, 1963), Geoffrey Sampson, Writing Systems (Stanford: Stanford University Press, 1985), John DeFrancis, Visible Speech (Honolulu: University of Hawaii Press, 1989), Wayne Senner, ed., The Origins of Writing (Lincoln: University of Nebraska Press, 1991), and J. T. Hooker, ed., Reading the Past (London: British Museum Press, 1990). A comprehensive account of significant writing systems, with plates depicting texts in each system, is David Diringer, The Alphabet, 3rd ed., 2 vols. (London: Hutch-inson, 1968). Jack Goody, The Domestication of the Savage Mind (Cambridge: Cambridge University Press, 1977), and Robert Logan, The Alphabet Effect (New York: Morrow, 1986), discuss the impact of literacy in general and of the alphabet in particular. Uses of early writing are discussed by Nicholas Postgate et al., "The evidence for early writing: Utilitarian or ceremonial?" Antiquity 69:459-80 (1995).Exciting accounts of decipherments of previously illegible scripts are given by Maurice Pope, The Story of Decipherment (London: Thames and Hudson, 1975), Michael Coe, Breaking the Maya Code (New York: Thames and Hudson, 1992), John Chadwick, The Decipherment of LinearB (Cambridge: Cambridge University Press, 1992), Yves Duhoux, Thomas Palaima, and John Bennet, eds., Problems in Decipherment (Louvain-la-Neuve: Peeters, 1989), and John Justeson and Terrence Kaufman, "A decipherment of epi-Olmec hieroglyphic writing," Science 259:1703-11 (1993).Denise Schmandt-Besserat's two-volume Before Writing (Austin: University of Texas Press, 1992) presents her controversial reconstruction of the origins of Sumerian writing from clay tokens over the course of nearly 5,000 years. Hans Nissen et al., eds., Archaic Bookkeeping (Chicago: University of Chicago Press, 1994), describes Mesopotamian tablets that represent the earliest stages of cuneiform itself. Joseph Naveh, Early History444" FURTHER READINGSof the Alphabet (Leiden: Brill, 1982), traces the emergence of alphabets in the eastern Mediterranean region. The remarkable Ugaritic alphabet is the subject of Gernot Windfuhr, "The cuneiform signs of Ugarit," Journal ofNear Eastern Studies 29:48-51 (1970). Joyce Marcus, MesoamericanWriting Systems: Propaganda, Myth, and History in Four Ancient Civilizations (Princeton: Princeton University Press, 1992), and Elizabeth Boone and Walter Mignolo, Writing without Words (Durham: Duke University Press, 1994), describe the development and uses of Mesoamerican writing systems. William Boltz, The Origin and Early Development of the ChineseWriting System (New Haven: American Oriental Society, 1994), and the same author's "Early Chinese writing," World Archaeology 17:420-36 (1986), do the same for China. Finally, Janet Klausner, Sequoyah's Gift (New York: HarperCollins, 1993), is an account readable by children, but equally interesting to adults, of Sequoyah's development of the Cherokee syllabary.Chapter 13The standard detailed history of technology is the eight-volume A History of Technology, by Charles Singer et al. (Oxford: Clarendon Press, 1954-84). One-volume histories are Donald Cardwell, The Fontana History of Technology (London: Fontana Press, 1994), Arnold Pacey, Technology in World Civilization (Cambridge: MIT Press, 1990), and Trevor Williams, The History of Invention (New York: Facts on File, 1987),; R. A. Buchanan, The Power of the Machine (London: Penguin Books,,; 1994), is a short history of technology focusing on the centuries since A.D.| 1700. Joel Mokyr, The Lever of Riches (New York: Oxford University*! Press, 1990), discusses why the rate of development of technology has va ied with time and place. George Basalla, The Evolution of Technolog (Cambridge: Cambridge University Press, 1988), presents an evolutionatf| view of technological change. Everett Rogers, Diffusion of Innovatic 3rd ed. (New York: Free Press, 1983), summarizes modern research on l transfer of innovations, including the QWERTY keyboard. David He loway, Stalin and the Bomb (New Haven: Yale University Press, 199 dissects the relative contributions of blueprint copying, idea diffusion p espionage), and independent invention to the Soviet atomic bomb.Preeminent among regional accounts of technology is the seriesFURTHERREADINGS • 445and Civilization in China, by Joseph Needham (Cambridge: Cambridge University Press), of which 5 volumes in 16 parts have appeared since 1954, with a dozen more parts on the way. Ahmad al-Hassan and Donald Hill Islamic Technology (Cambridge: Cambridge University Press, 1992), and K. D. White, Creek and Roman Technology (London: Thames and Hudson, 1984), summarize technology's history for those cultures.Two conspicuous examples of somewhat isolated societies adopting and then abandoning technologies potentially useful in competition with other societies involve Japan's abandonment of firearms, after their adoption in a.d. 1543, and China's abandonment of its large oceangoing fleets after a.d. 1433. The former case is described by Noel Perrin, Giving Up theGun (Boston: Hall, 1979), and the latter by Louise Levathes, When China Ruled the Seas (New York: Simon and Schuster, 1994). An essay entitled "The disappearance of useful arts," pp. 190-210 in W. H. B. Rivers, Psychology and Ethnology (New York: Harcourt, Brace, 1926), gives similar examples among Pacific islanders.Articles on the history of technology will be found in the quarterly journal Technology and Culture, published by the Society for the History of Technology since 1959. John Staudenmaier, Technology's Storytellers (Cambridge: MIT Press, 1985), analyzes the papers in its first twenty years.Specific fields providing material for those interested in the history of technology include electric power, textiles, and metallurgy. Thomas Hughes, Networks of Power (Baltimore: Johns Hopkins University Press, 1983), discusses the social, economic, political, and technical factors in the electrification of Western society from 1880 to 1930. Dava Sobel, Longitude (New York: Walker, 1995), describes the development of John Har-nson's chronometers that solved the problem of determining longitude at sea. E. J. W. Barber, Prehistoric Textiles (Princeton: Princeton University Press, 1991), sets out the history of cloth in Eurasia from its beginnings more than 9,000 years ago. Accounts of the history of metallurgy over wide regions or even over the world include Robert Maddin, The Beginning of the Use of Metals and Alloys (Cambridge: MIT Press, 1988), Theodore Wertime and James Muhly, eds., The Coming of the Age of Iron (New Haven: Yale University Press, 1980), R. D. Penhallurick, Tin inAntiquity (London: Institute of Metals, 1986), James Muhly, "Copper and ln, Transactions of the Connecticut Academy of Arts and Sciences 3;155-535 (1973), and Alan Franklin, Jacqueline Olin, and Theodore4 4 6 'FURTHERREADINGSWertime, The Search for Ancient Tin (Washington, D.C.: Smithsonian Institution Press, 1978). Accounts of metallurgy for local regions include R. F. Tylecote, The Early History of Metallurgy in Europe (London: Longman, 1987), and Donald Wagner, Iron and Steel in Ancient China (Leiden: Brill, 1993).Chapter 14The fourfold classification of human societies into bands, tribes, chiefdoms, and states owes much to two books by Elman Service: Primitive Social Organization (New York: Random House, 1962) and Origins of the State and Civilization (New York: Norton, 1975). A related classification of societies, using different terminology, is Morton Fried, The Evolution of Political Society (New York: Random House, 1967). Three important review articles on the evolution of states and societies are Kent Flannery, "The cultural evolution of civilizations," Annual Review of Ecology and Systematics 3:399-426 (1972), the same author's "Prehistoric social evolution," pp. 1-26 in Carol and Melvin Ember, eds., Research Frontiers in Anthropology (Englewood Cliffs: Prentice-Hall, 1995), and Henry Wright, "Recent research on the origin of the state," Annual Review of Anthropology 6:379-97 (1977). Robert Carneiro, "A theory of the origin of the state," Science 169:733-38 (1970), argues that states arise through warfare under conditions in which land is ecologically limiting. Karl Wittfogel, Oriental Despotism (New Haven: Yale University Press, 1957), relates state origins to large-scale irrigation and hydraulic management. Three essays in On the Evolution of Complex Societies, by William Sanders, Henry Wright, and Robert Adams (Malibu: Undena»J 1984), present differing views of state origins, while Robert Adams, 7M Evolution of Urban Society (Chicago: Aldine, 1966), contrasts state origins in Mesopotamia and Mesoamerica.Among studies of the evolution of societies in specific parts of the world, sources for Mesopotamia include Robert Adams, Heartland Cities (Chicago: University of Chicago Press, 1981), and J. N. Postga* Early Mesopotamia (London: Routledge, 1992); for Mesoamerica, ard Blanton et al., Ancient Mesoamerica (Cambridge: Cambridge University Press, 1981), and Joyce Marcus and Kent Flannery, Zapc Civilization (London: Thames and Hudson, 1996); for the Andes,-,FURTHERREADINGS '447Burger, Chavin and the Origins of Andean Civilization (New York, Thames and Hudson, 1992), and Jonathan Haas et al., eds., The Originsand Development of the Andean State (Cambridge: Cambridge University press, 1987); for American chiefdoms, Robert Drennan and Carlos Uribe, eds. Chiefdoms in the Americas (Lanham, Md.: University Press of America, 1987); for Polynesian societies, the books cited under Chapter 2; and for the Zulu state, Donald Morris, The Washing of the Spears (London: Jonathan Cape, 1966).Chapter 15Books covering the prehistory of both Australia and New Guinea include Alan Thorne and Robert Raymond, Man on the Rim: The Peopling of the Pacific (North Ryde: Angus and Robertson, 1989), J. Peter White and James O'Connell, A Prehistory of Australia, New Guinea, andSahul (Sydney: Academic Press, 1982), Jim Alien et al., eds., Sunda andSahul (London: Academic Press, 1977), M. A. Smith et al., eds., Sahul in Review (Canberra: Australian National University, 1993), and Tim Flan-nery, The Future Eaters (New York: Braziller, 1995). The first and third of these books discuss the prehistory of island Southeast Asia as well. A recent account of the history of Australia itself is Josephine Flood, Archaeology of the Dreamtime, rev. ed. (Sydney: Collins, 1989). Some additional key papers on Australian prehistory are Rhys Jones, "The fifth continent: Problems concerning the human colonization of Australia," Annual Reviews of Anthropology 8:445-66 (1979), Richard Roberts et al., "Ther-moluminescence dating of a 50,000-year-old human occupation site in northern Australia," Nature 345:153-56 (1990), and Jim Alien and Simon Holdaway, "The contamination of Pleistocene radiocarbon determinations in Australia," Antiquity 69:101-12 (1995). Robert Attenborough and Michael Alpers, eds., Human Biology in Papua New Guinea (Oxford: Clarendon Press, 1992), summarizes New Guinea archaeology as well as languages and genetics.As for the prehistory of Northern Melanesia (the Bismarck and Solomon Archipelagoes, northeast and east of New Guinea), discussion will be found in the above-cited books by Thorne and Raymond, Flannery, and scanned by Ugh in Cambridgeen et al. Papers pushing back the dates for the earliest occupation of Northern Melanesia include Stephen Wickler and Matthew Spriggs,eistocene human occupation of the Solomon Islands, Melanesia,"448• FURTHER READINGSAntiquity 62:703-6 (1988), Jim Alien et al., "Pleistocene dates for the human occupation of New Ireland, Northern Melanesia," Nature 331:707-9 (1988), Jim Alien et al., "Human Pleistocene adaptations in the tropical island Pacific: Recent evidence from New Ireland, a Greater Australian outlier," Antiquity 63:548-61 (1989), and Christina Pavlides and Chris Gosden, "35,000-year-old sites in the rainforests of West New Britain, Papua New Guinea," Antiquity 68:604-10 (1994). References to the Austronesian expansion around the coast of New Guinea will be found under further readings for Chapter 17.Two books on the history of Australia after European colonization are Robert Hughes, The Fatal Shore (New York: Knopf, 1987), and Michael Cannon, The Exploration of Australia (Sydney: Reader's Digest, 1987). Aboriginal Australians themselves are the subject of Richard Broome, Aboriginal Australians (Sydney: Alien and Unwin, 1982), and Henry Reynolds, Frontier (Sydney: Alien and Unwin, 1987). An incredibly detailed history of New Guinea, from the earliest written records until 1902, is the three-volume work by Arthur Wichmann, Entdeckungs-geschichte von Neu-Guinea (Leiden: Brill, 1909-12). A shorter and more readable account is Gavin Souter, New Guinea: The Last Unknown (Sydney: Angus and Robertson, 1964). Bob Connolly and Robin Anderson, First Contact (New York: Viking, 1987), movingly describes the first encounters of highland New Guineans with Europeans.For detailed accounts of New Guinea's Papuan (i.e., non-Austronesian) languages, see Stephen Wurm, Papuan Languages of Oceania (Tubingen; Gunter Narr, 1982), and William Foley, The Papuan Languages of NewGuinea (Cambridge: Cambridge University Press, 1986); and of Australian languages, see Stephen Wurm, Languages of Australia and Tasmania (The Hague: Mouton, 1972), and R. M. W Dixon, The Languages of Australia (Cambridge: Cambridge University Press, 1980).An entrance into the literature on plant domestication and origins of> food production in New Guinea can be found in Jack Golson, "Bulnaer phase II: Early agriculture in the New Guinea highlands," pp. 484-91 in;; Andrew Pawley, ed., Man and a Half (Auckland: Polynesian Society 1991), and D. E. Yen, "Polynesian cultigens and cultivars: The question oЈ| origin," pp. 67-95 in Paul Cox and Sandra Banack, eds., Islands,and Polynesians (Portland: Dioscorides Press, 1991).Numerous articles and books are devoted to the fascinating problem of| why trading visits of Indonesians and of Torres Strait islanders to Australl%|FURTHERREADINGS • 449produced only limited cultural change. C. C. Macknight, "Macassans and Aborigines," Oceania 42:283-321 (1972), discusses the Macassan visits, while D. Walker, ed., Bridge and Barrier: The Natural and Cultural History of Torres Strait (Canberra: Australian National University, 1972), discusses connections at Torres Strait. Both connections are also discussed in the above-cited books by Flood, White and O'Connell, and Alien et al.Early eyewitness accounts of the Tasmanians are reprinted in N. J. B. Plomley, The Baudin Expedition and the Tasmanian Aborigines 1802 (Hobart: Blubber Head Press, 1983), N. J. B. Plomley, Friendly Mission:The Tasmanian Journals and Papers of George Augustus Robinson, 1829-1834 (Hobart: Tasmanian Historical Research Association, 1966), and Edward Duyker, The Discovery of Tasmania: Journal Extracts from theExpeditions of Abel Janszoon Tasman and Marc-Joseph Marion Dufresne, 1642 and 1772 (Hobart: St. David's Park Publishing, 1992). Papers debating the effects of isolation on Tasmanian society include Rhys Jones, "The Tasmanian Paradox," pp. 189-284 in R. V. S. Wright, ed., Stone Tools asCultural Markers (Canberra: Australian Institute of Aboriginal Studies, 1977); Rhys Jones, "Why did the Tasmanians stop eating fish?" pp. 11-48 in R. Gould, ed., Explorations in Ethnoarchaeology (Albuquerque: University of New Mexico Press, 1978); D. R. Horton, "Tasmanian adaptation," Mankind 12:28-34 (1979); I. Walters, "Why did the Tasmanians stop eating fish?: A theoretical consideration," Artefact 6:71-77 (1981); and Rhys Jones, "Tasmanian Archaeology," Annual Reviews of Anthropology 24:423-46 (1995). Results of Robin Sim's archaeological excavations on Flinders Island are described in her article "Prehistoric human occupation on the King and Furneaux Island regions, Bass Strait," pp. 358-74 in Marjorie Sullivan et al., eds., Archaeology in the North (Darwin: North Australia Research Unit, 1994).Chapters 16 and 17Relevant readings cited under previous chapters include those on East Asian food production (Chapters 4-10), Chinese writing (Chapter 12), Chinese technology (Chapter 13), and New Guinea and the Bismarcks and Solomons in general (Chapter 15). James Matisoff, "Sino-Tibetan linguists: Present state and future prospects," Annual Reviews of Anthropology• 69-504 (1991), reviews Sino-Tibetan languages and their wider rela-45o* FURTHER READINGStionships. Takeru Akazawa and Emoke Szathmary, eds., Prehistoric Mongoloid Dispersals (Oxford: Oxford University Press, 1996), and Dennis Etler, "Recent developments in the study of human biology in China: A review," Human Biology 64:567-85 (1992), discuss evidence of Chinese or East Asian relationships and dispersal. Alan Thorne and Robert Raymond, Man on the Rim (North Ryde: Angus and Robertson, 1989), describes the archaeology, history, and culture of Pacific peoples, including East Asians and Pacific islanders. Adrian Hill and Susan Serjeantson, eds., The Colonization of the Pacific: A Genetic Trail (Oxford: Clarendon Press, 1989), interprets the genetics of Pacific islanders, Aboriginal Australians, and New Guineans in terms of their inferred colonization routes and histories. Evidence based on tooth structure is interpreted by Christy Turner III, "Late Pleistocene and Holocene population history of East Asia based on dental variation," American Journal of Physical Anthropology 73:305-21 (1987), and "Teeth and prehistory in Asia," Scientific American 260 (2):88-96 (1989).Among regional accounts of archaeology, China is covered by Kwang-chih Chang, The Archaeology of Ancient China, 4th ed. (New Haven: Yale University Press, 1987), David Keightley, ed., The Origins of Chinese Civilization (Berkeley: University of California Press, 1983), and David Keightley, "Archaeology and mentality: The making of China," Representations 18:91-128 (1987). Mark Elvin, The Pattern of the Chinese Past (Stanford: Stanford University Press, 1973), examines China's history since its political unification.– Convenient archaeological accounts of Southeast Asia include Charles Higham, The Archaeology of MainlandSoutheast Asia (Cambridge: Cambridge University Press, 1989); for Korea, Sarah Nelson, The Archaeology of Korea (Cambridge: Cambridge University Press, 1993); for Indonesia, the Philippines, and tropical Southeast Asia, Peter Bellwood, Prehistory of the Indo-Mat laysian Archipelago (Sydney: Academic Press, 1985); for peninsular Malay-sia, Peter Bellwood, "Cultural and biological differentiation in Peninsular– Malaysia: The last 10,000 years," Asian Perspectives 32:37-60 (1993); fo> r the Indian subcontinent, Bridget and Raymond Allchin, The Rise of Civilization in Indiaand Pakistan (Cambridge: Cambridge University Press, 1982); for Island Southeast Asia and the Pacific with special emphasis can Lapita, a series of five articles in Antiquity 63:547-626 (1989) and Patrick Kirch, The LapitaPeoples: Ancestors of the Oceanic World (London: Basil Blackwell, 1996); and for the Austronesian expansion as a whole, Androew Pawley and Mal-FURTHERREADINGS • 451colm Ross, "Austronesian historical linguistics and culture history," Annual Reviews of Anthropology 22:425-59 (1993), and Peter Bellwood et al., The Austronesians: Comparative and Historical Perspectives (Canberra: Australian National University, 1995).Geoffrey Irwin, The Prehistoric Exploration and Colonization of thePacific (Cambridge: Cambridge University Press, 1992), is an account of Polynesian voyaging, navigation, and colonization. The dating of the settlement of New Zealand and eastern Polynesia is debated by Atholl Ander-son, "The chronology of colonisation in New Zealand," Antiquity 65:767-95 (1991), and "Current approaches in East Polynesian colonisation research," Journal of the Polynesian Society 104:110-32 (1995), and Patrick Kirch and Joanna Ellison, "Palaeoenvironmental evidence for human colonization of remote Oceanic islands," Antiquity 68:310-21 (1994).Chapter 18Many relevant further readings for this chapter will be found listed under those for other chapters: under Chapter 3 for the conquests of the Incas and Aztecs, Chapters 4-10 for plant and animal domestication, Chapter 11 for infectious diseases, Chapter 12 for writing, Chapter 13 for technology, Chapter 14 for political institutions, and Chapter 16 for China. Convenient worldwide comparisons of dates for the onset of food production will be found in Bruce Smith, The Emergence of Agriculture (New York: Scientific American Library, 1995).Some discussions of the historical trajectories summarized in Table 18.1, other than references given under previous chapters, are as follows. For England: Timothy Darvill, Prehistoric Britain (London: Batsford, 1987). For the Andes: Jonathan Haas et al., The Origins and Developmentof the Andean State (Cambridge: Cambridge University Press, 1987); Michael Moseley, The Incas and Their Ancestors (New York: Thames and Hudson, 1992); and Richard Burger, Chavin and the Origins of AndeanCivilization (New York: Thames and Hudson, 1992). For Amazonia: Anna Roosevelt, Parmana (New York: Academic Press, 1980), and Anna Roosevelt et al., "Eighth millennium pottery from a prehistoric shell midden in the Brazilian Amazon," Science 254:1621-24 (1991). For Mesoam-erica: Michael Coe, Mexico, 3rd ed. (New York: Thames and Hudson,4 5 A ' FURTHER READINGS1984), and Michael Coe, The Maya, 3rd ed. (New York: Thames and Hudson, 1984). For the eastern United States: Vincas Steponaitis, "Prehistoric archaeology in the southeastern United States, 1970-1985," AnnualReviews of Anthropology 15:363—404 (1986); Bruce Smith, "The archaeology of the southeastern United States: From Dalton to de Soto, 10,500-500 b.p.," Advances in World Archaeology 5:1-92 (1986); William Kee-gan, ed., Emergent Horticultural Economies of the Eastern Woodlands (Carbondale: Southern Illinois University, 1987); Bruce Smith, "Origins of agriculture in eastern North America," Science 246:1566-71 (1989); Bruce Smith, The Mississippian Emergence (Washington, D.C.: Smithson-ian Institution Press, 1990); and Judith Bense, Archaeology of the Southeastern United States (San Diego: Academic Press, 1994). A compact reference on Native Americans of North America is Philip Kopper, The Smithsonian Book of North American Indians before the Coming of theEuropeans (Washington, D.C.: Smithsonian Institution Press, 1986). Bruce Smith, "The origins of agriculture in the Americas," Evolutionary Anthropology 3:174-84 (1995), discusses the controversy over early versus late dates for the onset of New World food production.Anyone inclined to believe that New World food production and societies were limited by the culture or psychology of Native Americans themselves, rather than by limitations of the wild species available to them for domestication, should consult three accounts of the transformation of Great Plains Indian societies by the arrival of the horse: Frank Row, TheIndian and the Horse (Norman: University of Oklahoma Press, 1955), John Ewers, The Blackfeet: Raiders on the Northwestern Plains (Norman: University of Oklahoma Press, 1958), and Ernest Wallace and E. Adamson –Hoebel, The Comanches: Lords of the South Plains (Norman: University of Oklahoma Press, 1986).Among discussions of the spread of language families in relation to the rise of food production, a classic account for Europe is Albert Ammerman and L. L. Cavalli-Sforza, The Neolithic Transition and the Genetics of ;| Populations in Europe (Princeton: Princeton University Press, 1984), while Peter Bellwood, "The Austronesian dispersal and the origin of languages,* Scientific American 265(l):88-93 (1991), does the same for the Austronesian realm. Studies citing examples from around the world are the two' | books by L. L. Cavalli-Sforza et al. and the book by Merritt Ruhlen cited as further readings for the Prologue. Two books with diametrically opposed interpretations of the Indo-European expansion provideFURTHERREADINGS • 453entrances into that controversial literature: Colin Renfrew, Archaeologyand Language: The Puzzle of Indo-European Origins (Cambridge: Cambridge University Press, 1987), and J. P. Mallory, In Search of the Indo-Europeans (London: Thames and Hudson, 1989). Sources on the Russian expansion across Siberia are George Lantzeff and Richard Pierce, Eastward to Empire (Montreal: McGill-Queens University Press, 1973), and W. Bruce Lincoln, The Conquest of a Continent (New York: Random House, 1994).As for Native American languages, the majority view that recognizes many separate language families is exemplified by Lyle Campbell and Marianne Mithun, The Languages of Native America (Austin: University of Texas, 1979). The opposing view, lumping all Native American languages other than Eskimo-Aleut and Na-Dene languages into the Amerind family, is presented by Joseph Greenberg, Language in the Americas (Stanford: Stanford University Press, 1987), and Merritt Ruhlen, A Guide to the World's Languages, vol. 1 (Stanford: Stanford University Press, 1987).Standard accounts of the origin and spread of the wheel for transport in Eurasia are M. A. Littauer and J. H. Crouwel, Wheeled Vehicles andRidden Animals in the Ancient Near East (Leiden: Brill, 1979), and Stuart Piggott, The Earliest Wheeled Transport (London: Thames and Hudson, 1983).Books on the rise and demise of the Norse colonies in Greenland and America include Finn Gad, The History of Greenland, vol. 1 (Montreal: McGill-Queens University Press, 1971), G. J. Marcus, The Conquest ofthe North Atlantic (New York: Oxford University Press, 1981), Gwyn Jones, The Norse Atlantic Saga, 2nd ed. (New York: Oxford University Press, 1986), and Christopher Morris and D. James Rackham, eds., Norseand Later Settlement and Subsistence in the North Atlantic (Glasgow: University of Glasgow, 1992). Two volumes by Samuel Eliot Morison provide masterly accounts of early European voyaging to the New World: The European Discovery of America: The Northern Voyages, A.D. 500-1600 (New York: Oxford University Press, 1971) and The European Discovery of America: The Southern Voyages, A.D. 1492-1616 (New York: Oxford University Press, 1974). The beginnings of Europe's overseas expansion are treated by Felipe Fernandez-Armesto, Before Columbus: Explorationand Colonization from the Mediterranean to the Atlantic, 1229-1492 (London: Macmillan Education, 1987). Not to be missed is Columbus's own day-by-day account of history's most famous voyage, reprinted as454" FURTHER READINGSOliver Dunn and James Kelley, Jr., The Diario of Christopher Columbus'sFirst Voyage to America, 1492-1493 (Norman: University of Oklahoma Press, 1989).As an antidote to this book's mostly dispassionate account of how peoples conquered or slaughtered other peoples, read the classic account of the destruction of the Yahi tribelet of northern California and the emergence of Ishi, its solitary survivor: Theodora Kroeber, Ishi in Two Worlds (Berkeley: University of California Press, 1961). The disappearance of native languages in the Americas and elsewhere is the subject of Robert Robins and Eugenius Uhlenbeck, Endangered Languages (Providence: Berg, 1991), Joshua Fishman, Reversing Language Shift (Clevedon: Multilingual Matters, 1991), and Michael Krauss, "The world's languages in crisis," Language 68:4-10 (1992).Chapter 19Books on the archaeology, prehistory, and history of the African continent include Roland Oliver and Brian Pagan, Africa in the Iron Age (Cambridge: Cambridge University Press, 1975), Roland Oliver and J. D. Page, A Short History of Africa, 5th ed. (Harmondsworth: Penguin, 1975), J. D. Page, A History of Africa (London: Hutchinson, 1978), Roland Oliver, The African Experience (London: Weidenfeld and Nicolson, 1991), Thurs-tan Shaw et al., eds., The Archaeology of Africa: Food, Metals, and Towns (New York: Routledge, 1993), and David Phillipson, African Archaeology, 2nd ed. (Cambridge: Cambridge University Press, 1993). Correlations between linguistic and archaeological evidence of Africa's past are summarized by Christopher Ehret and Merrick Posnansky, eds., The Archaeological and Linguistic Reconstruction of African History (Berkeley: University of California Press, 1982). The role of disease is discussed by Gerald Hart-wig and K. David Patterson, eds., Disease in African History (Durham: Duke University Press, 1978).As for food production, many of the listed further readings for Chapters 4-10 discuss Africa. Also of note are Christopher Ehret, "On the antiquity of agriculture in Ethiopia," Journal of African History 20:161-77 (1979); J. Desmond Clark and Steven Brandt, eds., From Hunters to Farmers: TheCauses and Consequences of Food Production in Africa (Berkeley: University of California Press, 1984); Art Hansen and Delia McMillan, eds.,FURTHERREADINGS • 455Food in Sub-Saharan Africa (Boulder, Colo.: Rienner, 1986); Fred Wen-dorf et al., "Saharan exploitation of plants 8,000 years b.p.," Nature 359:721-24 (1992); Andrew Smith, Pastoralism in Africa (London: Hurst, 1992); and Andrew Smith, "Origin and spread of pastoralism in Africa," Annual Reviews of Anthropology 21:125-41 (1992).For information about Madagascar, two starting points are Robert Dewar and Henry Wright, "The culture history of Madagascar," Journalof World Prehistory 7:417-66 (1993), and Pierre Verin, The History of Civilization in North Madagascar (Rotterdam: Balkema, 1986). A detailed study of the linguistic evidence about the source for the colonization of Madagascar is Otto Dahl, Migration from Kalimantan to Madagascar (Oslo: Norwegian University Press, 1991). Possible musical evidence for Indonesian contact with East Africa is described by A. M. Jones, Africaand Indonesia: The Evidence of the Xylophone and Other Musical and Cultural Factors (Leiden: Brill, 1971). Important evidence about the early settlement of Madagascar comes from dated bones of now extinct animals as summarized by Robert Dewar, "Extinctions in Madagascar: The loss of the subfossil fauna," pp. 574-93 in Paul Martin and Richard Klein, eds., Quaternary Extinctions (Tucson: University of Arizona Press, 1984). A tantalizing subsequent fossil discovery is reported by R. D. E. MacPhee and David Burney, "Dating of modified femora of extinct dwarf Hippopotamus from Southern Madagascar," Journal of Archaeological Science 18:695-706 (1991). The onset of human colonization is assessed from paleobotanical evidence by David Burney, "Late Holocene vegetational change in Central Madagascar," Quaternary Research 28:130-43 (1987).EpilogueLinks between environmental degradation and the decline of civilization in Greece are explored by Tjeerd van Andel et al., "Five thousand years of land use and abuse in the southern Argolid," Hesperia 55:103-28 (1986), Tjeerd van Andel and Curtis Runnels, Beyond the Acropolis: ARural Greek Past (Stanford: Stanford University Press, 1987), and Curtis Runnels, "Environmental degradation in ancient Greece," Scientific American 272(3):72-75 (1995). Patricia Fall et al., "Fossil hyrax middens from the Middle East: A record of paleovegetation and human disturbance," Pp. 408-27 in Julio Betancourt et al., eds., Packrat Middens (Tucson: Uni-4 5 6 'FURTHERREADINGSversity of Arizona Press, 1990), does the same for the decline of Petra, as does Robert Adams, Heartland of Cities (Chicago: University of Chicago Press, 1981), for Mesopotamia.A stimulating interpretation of the differences between the histories of China, India, Islam, and Europe is provided by E. L. Jones, The European Miracle, 2nd ed. (Cambridge: Cambridge University Press, 1987). Louise Levathes, When China Ruled the Seas (New York: Simon and Schuster, 1994), describes the power struggle that led to the suspension of China's treasure fleets. The further readings for Chapters 16 and 17 provide other references for early Chinese history.The impact of Central Asian nomadic pastoralists on Eurasia's complex civilizations of settled farmers is discussed by Bennett Bronson, "The role of barbarians in the fall of states," pp. 196-218 in Norman Yoffee and George Cowgill, eds., The Collapse of Ancient States and Civilizations (Tucson: University of Arizona Press, 1988).The possible relevance of chaos theory to history is discussed by Michael Shermer in the paper "Exorcising Laplace's demon: Chaos and antichaos, history and metahistory," History and Theory 34:59-83 (1995). Shermer's paper also provides a bibliography for the triumph of the QWERTY keyboard, as does Everett Rogers, Diffusion of Innovations, 3rd ed. (New York: Free Press, 1983).An eyewitness account of the traffic accident that nearly killed Hitler in 1930 will be found in the memoirs of Otto Wagener, a passenger in Hitler's car. Those memoirs have been edited by Henry Turner, Jr., as a book, Hitler: Memoirs of a Confidant (New Haven: Yale University Press, 1978). Turner goes on to speculate on what might have happened if Hitler had died in 1930, in his chapter "Hitler's impact on history," in David Wetzel, ed., German History: Ideas, Institutions, and Individuals (New York: Praeger, 1996).The many distinguished books by historians interested in problems of long-term history include Sidney Hook, The Hero in History (Boston: Beacon Press, 1943), Patrick Gardiner, ed., Theories of History (New York: Free Press, 1959), Fernand Braudel, Civilization and Capitalism (New York: Harper and Row, 1979), Fernand Braudel, On History (Chicago: University of Chicago Press, 1980), Peter Novick, That Noble Dream (Cambridge: Cambridge University Press, 1988), and Henry Hobhouse, Forces of Change (London: Sedgewick and Jackson, 1989).Several writings by the biologist Ernst Mayr discuss the differencesFURTHERREADINGS • 457between historical and nonhistorical sciences, with particular reference to the contrast between biology and physics, but much of what Mayr says is also applicable to human history. His views will be found in his Evolutionand the Diversity of Life (Cambridge: Harvard University Press, 1976), chap. 25, and in Towards a New Philosophy of Biology (Cambridge: Harvard University Press, 1988), chaps. 1-2.The methods by which epidemiologists reach cause-and-effect conclusions about human diseases, without resorting to laboratory experiments on people, are discussed in standard epidemiology texts, such as A. M. Lilienfeld and D. E. Lilienfeld, Foundations of Epidemiology, 3rd ed. (New York: Oxford University Press, 1994). Uses of natural experiments are considered from the viewpoint of an ecologist in my chapter "Overview: Laboratory experiments, field experiments, and natural experiments," pp. 3-22 in Jared Diamond and Ted Case, eds., Community Ecology (New York: Harper and Row; 1986). Paul Harvey and Mark Pagel, The Comparative Method in Evolutionary Biology (Oxford: Oxford University Press, 1991), analyzes how to extract conclusions by comparing species.creditsp. 221: J. Beckett/K. Perkins, American Museum of Natural History.Negative 2A17202.p. 223: Otis Imboden, The National Geographic Society.p. 229: Courtesy of V.I.P. Publishing.p. 231: H. Edward Kirn, The National Geographic Society.pp. 232 and 233: The Metropolitan Museum of Art.p. 240: Heracleion Museum, Hellenic Republic Ministry of Culture.BETWEEN PP. 224 AND 225Plates 1 and 8. Irven DeVore, Anthro-Photo.Plates 2-5. Courtesy of the author.Plate 6. P. McLanahan, American Museum of Natural History. Negative 337549.Plate 7. Richard Gould, American Museum of Natural History. Negative 332911.Plate 9. J. w. Beattie, American Museum of Natural History. Negative 12.Plate 10. Bogoras, American Museum of Natural History. Negative 2975.Plate 11. AP/Wide World Photos.Plate12. Judith Ferster, Anthro-Photo.4 6 O •CREDITSPlate 13. R. H. Beck, American Museum of Natural History. Negative 107814.Plate 14. Dan Hrdy, Anthro-Photo. Plate 15. Rodman Wanamaker, American Museum of Natural History. Negative 316824.Plate 16. Marjorie Shostak, Anthro-Photo.BETWEEN PP. 256 AND 257Plate 17. Boris Malkin, Anthro-Photo.Plate 18. Napoleon Chagnon, Anthro-Photo.Plate 19. Kirschner, American Museum of Natural History. Negative 235230.Plates 20, 22, 24, 30, and 32. AP/Wide World Photos.Plate 21. Gladstone, Anthro-Photo.Plate 23. Above, AP/Wide World Photos. Below, W. B., American Museum of Natural History. Negative 2A13829.Plate 25. Marjorie Shostak, Anthro-Photo.Plate 26. Irven DeVore, Anthro-Photo.Plate 27. Steve Winn, Anthro-Photo.Plate 28. J.B. Thorpe, American Museum of Natural History. Negative 336181.Plates 29 and 31. J. F. E. Bloss, Anthro-Photo.Scanned by Ugh 12/12/2001notes: