Да – молекулы со временем разрушаются, но из любого биологического материала, хотя бы из крохотного обломка кости или волоса, можно выделить ДНК, целые молекулы или их фрагменты. Волосы – это любимый материал генетиков. Они медленно разлагаются, и поэтому ДНК в них хорошо сохраняется. А еще волосы имеют гидрофобную поверхность, что позволяет хорошо отмывать их перед исследованием от грязи, содержащей постороннюю ДНК. «Консервации» ДНК способствуют такие факторы, как низкая влажность окружающей среды, низкие температуры и высокие концентрации некоторых солей. Разумеется, из останков, пролежавших в земле пятьдесят или сто тысяч лет, целых молекул ДНК получить невозможно, можно выделить только фрагменты, но по фрагментам можно достоверно воссоздать целое, у ученых есть такая возможность. А можно и не воссоздавать молекулу целиком, изучать только фрагменты, которые сами по себе дают много ценной информации. При помощи прибора, называемого амплификатором, исследователи могут создать необходимое количество копий исследуемых фрагментов или целых молекул. Часть ДНК обязательно сохраняется в специальных хранилищах, которые называются ДНК-библиотеками. Это делается для того, чтобы иметь материал для сравнения.
Возможности у современных генетиков поистине безграничные. Они даже способны обходиться без останков – ДНК можно получать из осадочных пород! В этих породах много разной ДНК намешано, но есть способы различать ДНК по видовой принадлежности и по возрасту. Можно надеяться на то, что исследование ДНК в осадочных породах рано или поздно позволит создать полную картину развития жизни на нашей планете. Станет точно известно, когда и где кто жил, раскроются все тайны эволюции.
До раскрытия всех тайн пока еще далеко, но и на сегодняшний день генетикам удалось многое сделать. Так, например, полностью воссоздан геном древней лошади, жившей примерно 700 000 лет назад, и, как уже было сказано выше, полностью установлен филогенетический ряд лошади.
Исследование ДНК современного человека и неандертальца доказало, что неандертальцы не являются нашими предками! Да, представьте себе – не являются. Наши пути, то есть пути наших предков и неандертальцев, разошлись примерно 300 000–400 000 лет назад. А еще установлено, что неандертальцы скрещивались с неафриканскими популяциями современных людей. Об этом свидетельствует неандертальская «примесь» в нашей ДНК.
По ходу нашего разговора мы не раз станем вспоминать о генах и генетических исследованиях. А сейчас давайте приступим к «расшифровке» заголовка этой главы. Кто такие Адам и Ева, объяснять не нужно, но почему Ева вдруг стала митохондриальной, а Адам – Y-хромосомным?
В митохондриях, маленьких клеточных энергетических станциях, как вы уже знаете, содержится своя митохондриальная ДНК. Этот вид ДНК наследуется только по материнской линии, поскольку отцовские митохондрии потомку не передаются. Сперматозоид представляет собой средство доставки ядерной ДНК к яйцеклетке. Подобно космическому кораблю, он должен быть предельно легким, ведь чем меньше вес, тем выше скорость. Размеры сперматозоидов у всех животных микроскопические. Наиболее крупные сперматозоиды у тритона, их длина составляет около 500 микрометров, а длина сперматозоидов человека варьирует в пределах 52–70 микрометров.
Маленькая головка, в которой кроме ядра (ДНК) практически ничего больше нет, коротенькая шейка с митохондриямии, длинный-предлинный хвост, выполняющий роль двигателя, вот что такое сперматозоид. Митохондрии нужны для обеспечения хвоста энергией, иначе бы их в шейке не было. Во время оплодотворения в яйцеклетку проникает только головка сперматозоида, шейка с хвостом остаются снаружи.
Чем меньше молекула, тем удобнее с ней работать исследователям. Молекулы митохондриальной ДНК относительно невелики. В нашей митохондриальной ДНК содержится «всего-навсего» 37 генов. Для сравнения, в молекулах ядерной ДНК счет генам идет на сотни или на тысячи. 13 митохондриальных генов кодируют синтез белков, служащих ферментами для проходящих в митохондриях химических реакций, а остальные гены кодируют синтез различных РНК.
Поскольку молекула митохондриальной ДНК во много раз короче молекулы ядерной ДНК, то митохондриальная ДНК лучше сохраняется в останках и при повреждениях ее проще восстанавливать. Да, разумеется, ядерная ДНК может дать гораздо больше информации, но приходится работать с тем, что есть. Как говорится – лучше синица в руках, чем журавль в небе, то есть лучше целая молекула митохондриальной ДНК, чем несколько коротеньких «невосстановимых» фрагментов ядерной ДНК.