Значит, интерферон необходим. И ученые включились в борьбу за получение этого белка на путях генетической инженерии. В принципе технология его получения та же, что и инсулина, только теперь надо из лейкоцитов человека выделить не сам интерферон, а его ген, и уже этот ген встраивать в кишечную палочку или дрожжи. Другой путь — синтезировать ген химически, что сделать труднее, чем в случае с инсулином, поскольку интерферон имеет гораздо более сложную структуру. Она была расшифрована лишь в 1980 году, и не прямым путем (белок был недоступен для прямого анализа), а через генетическую копию. Когда стала известна структура, появилась возможность начать химический синтез.
В нашей стране работа идет по обоим направлениям. Нельзя пока сказать, что задача решена. Но ген интерферона уже получен, и программа работ близка к завершению.
Эти два примера показывают огромные возможности генетической инженерии. Сейчас задача тщательной медицинской оценки генноинженерного препарата выдвигается на первый план.
Создание микроорганизмов с желаемыми свойствами стало делом привычным. Они сравнительно легко воспринимают любые гены, растут и синтезируют чужие белки. Процесс этот можно оптимизировать — искусственная система довольно легко поддается воздействию экспериментатора, и можно в сотни раз повышать выход одного какого-либо конкретного белка. Но надо всегда иметь в виду, что консервативность такой системы не столь велика, как у сложившегося организма, который оттачивался веками эволюции. Следовательно, новые организмы требуют большего внимания.
Это направление генной инженерии мы считаем одним из главных в биотехнологии, с прямыми выходами, наиболее перспективным для медицины.
Но есть и другие. Например, использование культур клеток. Это также биотехнология, то есть технология выращивания культуры клеток животных или растений. Естественно, проще выращивать их — подобно тому, как это делается с микроорганизмами — в ферментерах, чем выделять из организма, даже если это животные клетки, а не клетки человека.
Главное, что здесь определилось сегодня, — возможность практического использования последних достижений иммунологии. Известно, что организм для борьбы с любым чужаком, будь то микроб или вирус, выделяет специфические белки — антитела или иммуноглобулины. Такая защитная клетка иммунной системы, как лимфоцит, вырабатывает универсальные антитела, действенные против любых агентов, какие только можно себе представить. Данное свойство организма используется в медицине: в организм вводится убитый вирус, в ответ на него вырабатываются необходимые антитела, и организм подготавливается к встрече с живым вирусом.
А можно ли создать такую клетку, которая продуцировала бы только один конкретный тип антител против одного конкретного агента, вторгшегося в организм? Оказывается, можно. Это одно из последних достижений сегодняшней иммунологии: путем гибридизации клеток лимфоцитов с некоторыми другими клетками получают гибридные клетки — гибридомы, способные вырабатывать весьма специфические антитела против конкретных возбудителей, и их можно использовать для лечения. Речь идет о создании качественно новых «лекарств». Сегодня во всем мире, в том числе и в нашей стране, уже получены гибридомы различного типа. Теперь необходимо наладить их промышленное производство для борьбы с наиболее опасными агентами. Но и на этом пути предстоит решить еще немало задач...
Впечатляющие результаты получены советскими учеными при выращивании растительных клеток. Удалось показать, что, если поставить такую клетку в определенные условия, она может дать начало целому растению, а ведь еще недавно считали, что клетки строго специализированы. Уже стало реальностью выращивание культуры клеток женьшеня, из которых выделяют ценнейшее вещество корня женьшеня — паноксазин. Наша промышленность производит тонны такой культуры, а старатели приносят в год, как правило, 150—200 килограммов. Сравнение явно в пользу биотехнологии... Сейчас испытания проходят китайский лимонник и целый ряд других растений. В принципе таким способом можно выращивать любое растение, которое вырабатывает полезные человеку вещества.
Можно брать клетки в точке роста растения (в силу биологической специфичности они всегда свободны от вирусов) и размножать их в стерильных условиях. Получение безвирусного посадочного материала — одна из центральных проблем в растениеводстве. Но не менее важно это и для медицины, использующей лекарственные травы, — такими растениями легче управлять, они дают значительно больший выход полезной для человека продукции.