Суть технологии в том, что с помощью гормональной обработки от одной высокопородистой самки удается получить до 60 эмбрионов в год (вместо одного-двух). Их можно потом имплантировать (пересаживать) низкопородным самкам, получая таким образом от одной коровы 20—30 телят за сезон. Все это в целом создало базу, с одной стороны, для резкого повышения эффективности и темпов племенной работы, с другой — для дальнейших, более тонких манипуляций с эмбрионами сельскохозяйственных животных, их генетическим аппаратом. Хотя сегодняшние достижения в этой области лишь начало и речь пока идет об относительно простых манипуляциях, исследования развиваются очень быстро, и их внедрение в практику животноводства обещает дать огромный экономический эффект.
Большие возможности и здесь таят в себе методы генной инженерии. Воздействие на тонкую структуру нуклеиновых кислот, замена одних генов другими прокладывают путь к программированному изменению физиологических особенностей растений и животных. На очереди такие эксперименты, как перестройка генетического аппарата путем «перемещения» генов из одних организмов в другие подобно тому, как это делается сейчас с микроорганизмами.
Я назвал лишь несколько направлений. Их значительно больше. Исследования ученых охватывают самый широкий круг вопросов, с которыми связано решение многих важнейших народнохозяйственных задач.
...Иногда, когда я рассказываю об этом, журналисты задают мне вопрос: курс на эффективность научных исследований — не означает ли он явный приоритет прикладных разработок и не наносит ли это ущерба фундаментальным исследованиям, которые не связаны непосредственно с потребностями людей и эффект которых нередко трудно предвидеть?
Должен сказать, что наука исторически возникла именно из потребностей человеческого общества. И какую область исследований ни возьми, все они направлены в нашей стране на удовлетворение запросов и потребностей человека. В этом смысле само деление науки на фундаментальную и прикладную мне кажется очень условным.
Но мы разделяем категории науки, ее направления, имея в виду временной фактор, то есть то, что используется сегодня, в исторически очень короткий срок, и то, что рассчитано на длительную перспективу и сегодня вообще не оценивается с точки зрения использования, потому что прямо не видно, как это можно использовать. В этом плане мы говорим — прикладные и фундаментальные исследования.
Наша страна в этом отношении, мне кажется, ведет очень дальновидную политику. С момента организации Советского государства был создан такой мощнейший институт, специально предназначенный для развития фундаментальных исследований, как Академия наук СССР, у которой нет аналогов в мире. И благодаря такой дальновидности по очень многим направлениям науки мы сейчас занимаем ведущие позиции в мире.
Фундаментальная наука в нашей стране в большом почете. Есть традиционный «вкус» к развитию фундаментальных исследований. Высокий авторитет Академии наук, концентрация крупных ученых в этом учреждении стимулируют и вузы, и отраслевые институты принимать активное участие в научной деятельности.
Задача фундаментальной науки заключается в том, чтобы развиваться во всех возможных направлениях, потому что трудно себе представить заранее, где именно произойдет «всплеск». И Академия наук оказывается всегда готовой к развитию самого неожиданного направления. Пример? Та же генетическая инженерия. Шесть лет назад ее просто не существовало. Это было одно из направлений изучения нуклеиновых кислот. Некоторые даже считали, что им можно пренебречь. Но сегодня мы видим, что уровень фундаментальных работ здесь достаточно высок, он и позволил быстро выйти на технологические рельсы.
Если опять же обратиться к близкой мне области физико-химической биологии, то на целом ряде примеров можно показать, какие советские фундаментальные работы выполняются на мировом уровне. Среди них изучение генома высших организмов (работы члена-корреспондента АН СССР Г. Георгиева), исследования процессов, связанных с молекулярными аспектами биосинтеза белка на рибосомах (работы академика А. Спирина), исследования биоэнергетических процессов, механизмов воспроизводства энергии в митохондриях — своего рода энергетических фабриках в клетке (работы члена-корреспондента В. Скулачева). Очень интенсивно развиваются у нас сейчас исследования биологических мембран, которые, окружая клетку, создают в ней свой климат, пропуская одни вещества и задерживая другие (работы члена-корреспондента В. Иванова). В исследованиях транспорта ионов кальция через мембраны (академик П. Костюк), вообще в исследованиях транспорта ионов через мембраны и использовании различных регуляторов, действие которых направлено на увеличение потоков металлов в биологических и искусственных мембранах, работы советских ученых пионерские в мире.
Биотехнология ближайших лет