Начнем с частоты колебаний 50 Гц. С такой частотой подается переменный ток в наши квартиры. Именно им питаются бытовые электроприборы. Пропуская частоты в сотни и тысячи герц, с которыми переменные токи переносят цифровую речь в городских и междугородных кабелях связи, поднимаемся сразу в диапазон частот до миллионов герц (мегагерц). Здесь мы попадаем в мир радиоволн. На них ведут передачи радиовещательные станции. При 100 МГц мы попадаем в область цифрового кабельного телевидения, а при 10000 МГц (10 ГГц) — в область радиолокации. В диапазоне 430–700 ГГц нас встречают цвета радуги: мы попадаем в область видимых электромагнитных волн, проще говоря — света. Увеличивая частоты колебаний, мы оказываемся в области рентгеновских и гамма-лучей. Это диапазоны частот 1018 и 1023—1024 Гц. Показатель степени — число нулей, которые надо поставить после единицы, чтобы получить частоту в герцах. За ними следуют самые высокочастотные из известных нам волн — космические лучи. Они приходят к нам из таинственных глубин Вселенной.
Как видите, и электричество, и радиоволны, и свет, и рентгеновское излучение, и гамма-частицы — все они одной природы. Только разные частоты отличают их и придают им "индивидуальность".
В СВЧ-генераторах радиорелейных и спутниковых линий передачи длины используемых электромагнитных волн составляют caнтиметры. В оптических же генераторах длины электромагнитных волн сократились с сантиметров до десятитысячных долей миллиметра. Частотам видимого света (4,3•1014-7•1014 Гц) соответствуют длины волн 0,7–0,43 мкм (1 микрометр — это одна миллионная доля метра).
Так зачем же нам нужно, чтобы "радиосигнал" засветился всеми цветами радуги? Почему потребовались электромагнитные волны все большей частоты? Ответы на эти вопросы довольно просты. Во-первых, чем выше частота электромагнитных колебаний, тем шире может быть рабочая полоса частот. Это, в свою очередь, позволяет передавать цифровую информацию с большей скоростью (по аналогии с автострадой: чем она шире, тем легче по ней гнать). Для иллюстрации этого факта напомним, что для передачи цифровой речи (скорость 64000 бит/с) необходимо, чтобы в рабочей полосе частот "укладывались" гармоники с частотами 32, 96, 160, 224 кГц…., а для передачи цифрового телевидения (скорость 104000000 бит/с) — гармоники с частотами, большими в тысячи раз: 52, 156, 260, 364 МГц…. Таким образом, для цифрового телевидения нужна ширина рабочей полосы, превышающая сотни мегагерц.
Если взять, к примеру, средневолновый радиовещательный диапазон, лежащий, как вы знаете, в пределах 0,3–3 МГц, то его ширина составляет всего 2,7 МГц. Ясно, что цифровое телевидение в нем передать не удается. В то же время для этого вполне подходят сантиметровые волны СВЧ-диапазона, в котором "разместились" радиорелейные и спутниковые линии передачи. Поскольку рабочая полоса частот световых волн намного шире, в ней легко расположить десятки и даже сотни программ цифрового телевидения.
Вторая причина, по которой предпочтительнее использовать световые волны, заключается в следующем. Угол расходимости пучка радиоволн пропорционален длине волны и обратно пропорционален размеру передающей антенны. Это означает, что для получения более узкого луча нужно уменьшать длину волны колебания. Вот несколько примеров. Радиолуч с длиной волны 3 см (частота 10 ГГц), сфокусированный антенной двухметрового диаметра, через 100 км разойдется настолько сильно, что его диаметр будет равен почти 3 км. Если принимать этот луч на трехметровую антенну, она "уловит" лишь 1/1000000 часть энергии передаваемого радиосигнала. Диаметр радиолуча с длиной волны 3 мм (частота 100 ГГц), излучаемого этой же передающей антенной, через 100 км будет значительно меньше — всего 300 м, и та же трехметровая приемная антенна получит уже 1/1 000 часть энергии. Для луча с длиной волны 2 мкм (частота 300 ТГц — инфракрасное излучение) достаточно использовать "оптическую" антенну (фокусирующую линзу) диаметром всего 10 см, чтобы через 100 км луч разошелся не более чем на 2 м.
Для дальней радиосвязи особенно выгодно пользоваться оптическими генераторами. Подсчитано, что для освещения с Земли на Луне площадки в 1 км" в оптическом диапазоне волн понадобится "прожектор" диаметром 20–30 см. В сантиметровом же диапазоне радиоволн, в котором работают радиорелейные и спутниковые линии связи, для этого потребуется антенна диаметром более 1 км.
Итак, использование светового луча сулит нам немалые выгоды: передачу цифр с огромной скоростью и на очень большие расстояния.
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука