Читаем ...И мир загадочный за занавесом цифр. Цифровая связь полностью

Как же "извлечь" фотографию из электронной памяти? Двоичную информацию, "считанную" из ячеек памяти, нужно подать на ЦАП. Он превратит двоичный импульсный код в непрерывный ток — электрическую копию изображения. Если этот ток пропустить теперь через специальную газосветную (или газоразрядную) лампу, она будет вспыхивать то ярче, то слабее — как бы мигать в зависимости от силы тока. Остается только сфокусировать оптическими линзами свет от этой лампы в виде пятна размером 0,1х0,1 мм и по строкам перемещать его вдоль фотопленки или фотобумаги. Так как яркость свечения лампы меняется, в различных участках фотографического материала будет вызываться большее или меньшее почернение светочувствительного слоя. В результате этих следов на фотопленку или фотобумагу точка за точкой, строка за строкой наносится изображение. Пока оно еще скрыто от наших глаз. Но вот завершены процессы проявления и фиксирования — и перед нами точная фотокопия оригинала, помещенного ранее в электронную память.

Фотография… Она запечатлевает только одно вырванное из жизни мгновение. И это "застывшее" мгновение оказалось возможным превратить в чередование 0 и 1, которые, в свою очередь, можно "упаковать" в интегральную микросхему "до востребования" или передать с помощью средств связи по назначению.

А нельзя ли "законсервировать" в электронных ячейках не одиночный стоп-кадр из многообразной жизни, а хотя бы ее небольшой "кусочек"? Представьте, вы подключили к дисплею электронную память и на его экране ожили застывшие до той поры мгновенья.

Живые картинки? Ожившие фотографии? Да ведь их впервые широкая публика увидела еще 28 декабря 1895 г. — в Париже на сеансе "синематографа" братьев Огюста и Луи Люмьеров.

Возможно, братья были знакомы с замечательным свойством глаза "видеть" исчезающее изображение еще примерно 0,1 с. Весь "секрет", таким образом, заключается в том, что если каждую секунду делать десять или более фотографий, а затем предъявлять их с такой же частотой, то человек не будет наблюдать разрывов между изображениями. На этом эффекте основаны и "синематограф" братьев Люмьеров, и современное кино, и телевидение. Заметим лишь, что для устранения неприятных мельканий на экране каждую секунду снимается и затем воспроизводится не 10, а 25 кадров.

Не правда ли, эти 25 неподвижных изображений напоминают нам отсчетные значения такого непрерывного процесса, как окружающая нас жизнь, взятые через промежутки 1/25 с?

Итак, любое подвижное изображение — это смена через каждые 40 мс одного неподвижного изображения другим. За время между сменой кадров нужно успеть просмотреть все неподвижное изображение. Как вы помните, изображение размером, скажем, с почтовую открытку содержит миллион элементарных площадок или элементов изображения размером 0,1х0,1 мм. Значит, каждый элемент изображения придется рассматривать в течение одной миллионной доли от отведенных на весь кадр 40 мс. Это непостижимо короткий отрезок времени — всего четыре десятимиллиардных доли секунды! Ясно, что ни одно механическое устройство не способно перемещать световое пятно и фотоэлемент по строкам изображения с такой скоростью.

Вы никогда не задумывались над тем, что вы видите на экране телевизора, когда усаживаетесь перед ним в свободный вечер? Изображение? Нет, в действительности на экране никакого изображения нет, абсолютно никакого! Если бы мы сумели открыть глаза на какую-то ничтожную долю секунды (а речь идет о миллионных и даже миллиардных долях), то увидели бы на экране всего одну светящуюся точку. Это она бежит с невероятной скоростью по экрану, оставляя в нашем глазу след (помните, мы видим то, чего уже нет, еще в течение 0,1 с), изменяющийся по яркости.

Что же заставляет светящуюся точку перемещаться с такой головокружительной быстротой? Электронный луч. Это он способен почти мгновенно отклоняться под действием изменяющегося магнитного поля и развертывать "картинки". Это его можно очень точно сфокусировать с помощью специальных электрических "линз". Первые опыты с электронным лучом начались в самом начале XX в. Еще в 1907 г. профессор Петербургского технологического института Б.Л. Розинг сконструировал первую электронно-лучевую трубку и получил на ней изображение, правда, невысокого качества. Изобретение в начале 30-х годов первых передающих телевизионных трубок с высоким разрешением связано с именами советских ученых, пионеров отечественного телевидения С.И. Катаева и П.В. Шмакова.

Как бы ни отличались конструкции передающих телевизионных трубок разных лет, все они в чем-то имитируют глаз. Роль хрусталика выполняет объектив, роль зрачка — диафрагма. Имеется в трубке и своя "сетчатка" — пластинка, напоминающая пчелиные соты, в ячейках которых располагаются микроскопические фотоэлементы. Конечно, их намного меньше, чем фоторецепторов в глазу: всего около 0,5 млн. Изображение, которое нужно превратить в серию электрических импульсов, проектируется с помощью объектива на эту искусственную "сетчатку".

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература