Читаем ...И мир загадочный за занавесом цифр. Цифровая связь полностью

Так зачем же нам нужно, чтобы "радиосигнал" засветился всеми цветами радуги? Почему потребовались электромагнитные волны все большей частоты? Ответы на эти вопросы довольно просты. Во-первых, чем выше частота электромагнитных колебаний, тем шире может быть рабочая полоса частот. Это, в свою очередь, позволяет передавать цифровую информацию с большей скоростью (по аналогии с автострадой: чем она шире, тем легче по ней гнать). Для иллюстрации этого факта напомним, что для передачи цифровой речи (скорость 64000 бит/с) необходимо, чтобы в рабочей полосе частот "укладывались" гармоники с частотами 32, 96, 160, 224 кГц…., а для передачи цифрового телевидения (скорость 104000000 бит/с) — гармоники с частотами, большими в тысячи раз: 52, 156, 260, 364 МГц…. Таким образом, для цифрового телевидения нужна ширина рабочей полосы, превышающая сотни мегагерц.

Если взять, к примеру, средневолновый радиовещательный диапазон, лежащий, как вы знаете, в пределах 0,3–3 МГц, то его ширина составляет всего 2,7 МГц. Ясно, что цифровое телевидение в нем передать не удается. В то же время для этого вполне подходят сантиметровые волны СВЧ-диапазона, в котором "разместились" радиорелейные и спутниковые линии передачи. Поскольку рабочая полоса частот световых волн намного шире, в ней легко расположить десятки и даже сотни программ цифрового телевидения.

Вторая причина, по которой предпочтительнее использовать световые волны, заключается в следующем. Угол расходимости пучка радиоволн пропорционален длине волны и обратно пропорционален размеру передающей антенны. Это означает, что для получения более узкого луча нужно уменьшать длину волны колебания. Вот несколько примеров. Радиолуч с длиной волны 3 см (частота 10 ГГц), сфокусированный антенной двухметрового диаметра, через 100 км разойдется настолько сильно, что его диаметр будет равен почти 3 км. Если принимать этот луч на трехметровую антенну, она "уловит" лишь 1/1000000 часть энергии передаваемого радиосигнала. Диаметр радиолуча с длиной волны 3 мм (частота 100 ГГц), излучаемого этой же передающей антенной, через 100 км будет значительно меньше — всего 300 м, и та же трехметровая приемная антенна получит уже 1/1 000 часть энергии. Для луча с длиной волны 2 мкм (частота 300 ТГц — инфракрасное излучение) достаточно использовать "оптическую" антенну (фокусирующую линзу) диаметром всего 10 см, чтобы через 100 км луч разошелся не более чем на 2 м.

Для дальней радиосвязи особенно выгодно пользоваться оптическими генераторами. Подсчитано, что для освещения с Земли на Луне площадки в 1 км" в оптическом диапазоне волн понадобится "прожектор" диаметром 20–30 см. В сантиметровом же диапазоне радиоволн, в котором работают радиорелейные и спутниковые линии связи, для этого потребуется антенна диаметром более 1 км.

Итак, использование светового луча сулит нам немалые выгоды: передачу цифр с огромной скоростью и на очень большие расстояния.

Но всякий ли луч света годится для этого? Давайте попробуем построить световой телеграф. На передающем конце включим последовательно телеграфный ключ, батарею питания и обычную электрическую лампочку. Чтобы лучи света от нее не рассеивались, установим зеркальный отражатель. Передатчик световой линии готов. Кладите руку на ключ и начинайте телеграфировать — лампочка будет вспыхивать в такт вашим нажатиям на ключ и импульсы света полетят в пространство. Роль приемника поручим выполнять уже знакомому нам фотоэлементу. Под воздействием импульсов света в его цепи будут возникать импульсы тока. Пропуская их через электромагнит, можно получить отпечатки точек и тире на бумажной ленте, как это делается в телеграфе Морзе. Световой телеграф работает!

К сожалению, дальность действия такого телеграфа ограничена расстоянием в несколько метров, в лучшем случае, в считанные десятки метров. Дело в том, что электрическая лампочка излучает свет во все стороны и никакая оптическая система не может собрать его в одну точку. Посмотрите на свет прожектора со стороны. Чем дальше уходит он от прожектора, тем больше расходятся лучи. Пучок света обязательно будет "размазан" в пространстве.

— Как же удалось получить тонкий и в то же время очень мощный луч в гиперболоиде, описанном в романе А.Н. Толстого? — спросит читатель.

Ну что же, вернемся к изобретению инженера Гарина:

«— Вот мой аппарат, — сказал он, ставя на стол два металлических ящика: один — узкий, в виде отрезка трубы, другой плоский, двенадцатигранный — втрое большего диаметра.

…Лучи, собираясь в фокусе зеркала, попадают на поверхность гиперболоида и отражаются от него математически параллельно, — иными словами, гиперболоид концентрирует все лучи в один луч, или в "лучевой шнур", любой толщины… При этом я могу довести его (практически) до толщины иглы… Вся задача — в нахождении компактных и чрезвычайно могучих источников лучевой энергии».

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Киберкрепость: всестороннее руководство по компьютерной безопасности
Киберкрепость: всестороннее руководство по компьютерной безопасности

Как обеспечить надежную защиту в эпоху, когда кибератаки становятся все более продвинутыми? Каковы последствия уязвимости цифровых систем? Петр Левашов, экс-хакер с богатым бэкграундом, рассматривает все грани кибербезопасности, начиная с базовых принципов и заканчивая новейшими технологиями.Читатели познакомятся с:• основами компьютерной безопасности и актуальными методами защиты;• современными методами шифрования данных и криптографии;• процедурами ответа на инциденты и восстановления после катастроф;• юридическими и регуляторными требованиями к компьютерной безопасности.Автор использует свой уникальный опыт, чтобы предоставить читателям углубленное понимание кибербезопасности. Его подход охватывает теоретические знания и практическую подготовку, делая этот материал доступным для профессионалов и новичков.

Пётр Юрьевич Левашов

Зарубежная компьютерная, околокомпьютерная литература