Полимеризация была открыта еще в середине прошлого века. Тогда же были выделены первые полимеризующиеся мономеры (стирол, акриловая кислота и др.). Поли-4-винилпиридин и полиакриловая кислота являются полиэлектролитами — полимерами, способными приобретать в растворах множественные электрические заряды. При этом в одной макромолекуле возникает большое число периодически повторяющихся зарядов — соответственно звеньям, составляющим гигантскую молекулу. По тому, какие именно заряды (анионы или катионы) возникают на полимерной цепи, все полиэлектролиты делятся на полианионы, поликатионы и полиафолиты. Для последних характерно наличие и тех и других групп.
К полиэлектролитам относятся важнейшие природные биополимеры — белки и нуклеиновые кислоты. Анионами в растворах белков становятся карбоксильные группировки (-СООН), а катионами — аминогруппы (-NH2
). Некоторые аминокислоты относятся к катионам, например лизин, а другие — к анионам (аспарагиновая и глутаминовая кислоты). Белковые молекулы представляют собой полиамфолиты. Плазма крови — это сложный раствор электролитов, широко распространенных в природе. Использованные в наших исследованиях синтетические полиэлектролиты — полиакриловая кислота и поли-4-винилпиридин — аналогов в природе, как уже сказано, не имеют, то есть являются полностью искусственными.Очень интересное и важное свойство синтетических неприродных полиэлектролитов — их способность к образованию комплексов с белками и полисахаридами. Но ведь именно белками и полисахаридами представлены антигены возбудителей инфекционных заболеваний. Антигены опухолей также белки. А что, если получить искусственный комплекс полиэлектролит — белок? Какие биологические свойства проявит такой комплекс, учитывая возможное стимулирующее действие полиэлектролита на иммунитет? Забегая вперед, скажем, что работа в этом направлении привела к синтезу искусственных макромолекул с поразительными качествами.
Трудность таких исследований заключалась в том, что комплексы синтетических полиоснований и поликислот с белками, возникающие в условиях опыта in vitro, оказываются крайне неустойчивыми при физиологических значениях рН и ионной силы и, естественно, разрушаются при введении в организм. Поэтому химики (Кабанов и Мустафаев) задались целью синтезировать такие полимеры, которые формировали бы устойчивые комплексы с белками, не разрушающиеся в условиях живого организма, и одновременно обладали бы всеми иммуностимулирующими свойствами описанных выше полиэлектролитов. Задача была решена следующим путем. Цепочки поли-4-винилпиридина нагрузили боковыми радикалами, которые обеспечили возникновение прочных связей с белковыми макромолекулами. Эти радикалы представлены углеводородными группами.
Выявилась интересная закономерность: если число атомов углерода в этих радикалах ниже 10, то они образуют комплексы с белком за счет электростатических связей. Эти связи слабые и разрушаются в условиях организма. Достаточно прочные гидрофобные (водоотталкивающие) связи с глобулами белка обеспечивают радикалы, в которых число атомов углерода равно или больше 10. Комплексы белка с полиэлектролитами, несущими гидрофобные радикалы, отличаются прочностью и не распадаются при введении в организм. Следует отметить, что чем больше атомов углерода в боковых радикалах, тем сильнее взаимодействие между полиэлектролитом и гидрофобными участками белковых молекул.
Сборка антигенов на полиэлектролитах
Итак, "неприродные" полиэлектролиты активно влияют на иммунитет. Введение животным чисто синтетических полианионных или поликатионных соединений усиливает отдельные этапы иммуногенеза. В конечном итоге эти соединения интенсифицируют иммунный ответ. Естественно, возникла мысль, о которой мы уже говорили: если слабый антиген присоединить к макромолекуле полимера, стимулирующего выработку антител и обеспечивающего тимуснезависимость, то такая "комбинированная" молекула должна идеально сочетать в себе как антигенную специфичность, так и стимулирующие свойства. Не путь ли это к проблеме создания "суперантигенов"?
Была предпринята попытка создания такого искусственного синтетического антигена на основе макромолекулы поли-4-винилпиридина.
В качестве антигенной детерминанты при этом было использовано простое химическое соединение — тринитрофенильная группировка. Вещества типа тринитрофенила называются гаптенами. Сами стимулировать иммунный ответ, то есть выработку антител, они не могут, пока не присоединятся к белку или другой природной макромолекуле. Мы присоединили тринитрофенильную группировку к "неприродной" молекуле поли-4-винилпиридина. И получили антиген с поразительными свойствами! Легко удалось выработать антитела против гаптена, присоединенного к очень простому полимерному соединению.