Читаем Я — математик. Дальнейшая жизнь вундеркинда полностью

Последний международный математический конгресс перед первой мировой войной происходил в 1912 году в Кембридже (Англия). Следующий должен был состояться в 1916 году, но созвать его не было никакой возможности. Поэтому конгресс 1920 года не был подготовлен заблаговременно. Воспользовавшись благоприятным стечением обстоятельств, Франция взяла инициативу в свои руки и предложила созвать конгресс в одном из городов, только что возвращенных в ее лоно, а именно в Страсбурге. Предложение это оправдывалось тем, что в новой Франции Страсбургский университет стал вторым по значению университетом в стране и единственным провинциальным учебным заведением со своими собственными традициями.

По многим причинам решение провести конгресс в Страсбурге оказалось неудачным. Потом я даже жалел, что своим присутствием как бы выразил согласие с этим решением. Немцев в виде наказания лишили права участия в конгрессе. В зрелые годы я пришел к выводу, что подобные меры недопустимы в практике международных научных отношений. Возможно, что в противном случае конгресс еще очень долго не мог бы состояться, но, может быть, лучше было согласиться на отсрочку, чем допустить проникновение националистического духа в такое действительно интернациональное учреждение, как международный съезд ученых. В свое оправдание я могу сказать немного: я был молод и занимал такое незначительное положение, что не чувствовал личной ответственности за направление развития мировой науки. Мне представлялся прекрасный случай поехать в Европу не туристом, а ученым — очень скромным, но все-таки ученым, — у кого бы на моем месте хватило духа отказаться?

Конгресс должен был состояться в сентябре, и мне хотелось до этого поработать с кем-нибудь из европейских математиков, интересующихся теми же вопросами, что и я. По некотором размышлении я остановил свой выбор на Морисе Фреше. Фреше яснее других понимал, какие возможности открывает математика кривых по сравнению с математикой точек (я говорил об этом в предыдущей главе), и в то время все были уверены, что его работы станут важным этапом на пути создания новой математической науки.

Надо сказать, что в настоящее время полученные Фреше результаты, при всей своей значительности, занимают в математике все-таки совсем не то место, которое им когда-то прочили. В какой-то степени это связано с тем, что его работы проникнуты духом абстрактного формализма, глубоко враждебным любым конкретным физическим применениям. Но в то время в Страсбурге — оценить прошлое всегда легче, чем предсказать будущее, — большинство считало, что Фреше безусловно станет вождем математиков своего поколения.

Лично меня в работе Фреше привлекало главным образом то, что по своей внутренней направленности она очень близко примыкала к тому, чем я пытался заниматься в Колумбийском университете в период увлечения топологией. Занятия под руководством Рассела и последующее знакомство с работами Уайтхеда пробудили во мне интерес к использованию в математике аппарата формальной логики. А в работе Фреше многие части так и напрашивались, чтобы их изложили на том странном и в высшей степени оригинальном математико-логическом языке, который Уайтхед и Рассел изобрели для своей работы «Принципы математики» (Principia Mathematical[25].

Собственно, теперь я мог бы уже приступить к описанию конгресса, но, прежде чем рассказывать о событиях, происходивших в Страсбурге летом 1920 года, мне хотелось бы остановиться на смысле терминов «постулационизм» и «конструкционализм». Достоинства и недостатки этих двух школ до сих пор являются предметом многочисленных споров в математике. Не мудрено, что в Страсбурге эта проблема доставила мне множество волнений.

Греческая геометрия исходит из некоторых основных предположений, называемых аксиомами или постулатами; эти предположения рассматриваются как простейшие бесспорные законы логики и геометрии. Некоторые из них имеют в основном формально-логический характер, вроде аксиомы о том, что две величины, равные одной и той же третьей величине, должны быть равны между собой. Другие описывают пространственные отношения, как, например, аксиома параллельности, утверждающая, что через каждую точку Р плоскости, не лежащую на заданной в той же плоскости прямой l, проходит одна и только одна прямая, не пересекающая l, которая и будет параллельна l.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии