Позднее мы получили приглашение посетить дом Хонгов, который показался нам похожим на музей — столько там было великолепных образцов современной китайской живописи. На стенах висели многочисленные панно с тонкими, искусно выполненными изображениями рыб, креветок, крабов и других маленьких обитателей моря. Китайская живопись, так же как и живопись их учеников японцев, отличается изяществом, вкусом и полным отсутствием той слащавой сентиментальности, которая так портит многие картины западных мастеров. Для буддистов бог неотделим от природы, через которую он выражает себя. Они видят бога во всем, что их окружает, а отнюдь не представляют его себе в виде какой-то квазичеловеческой личности, привнесенной в мир откуда-то извне.
От китайских картин естественно перейти к китайским банкетам, так как кулинария в Китае — такой же вид искусства, как живопись. Для меня, вегетарианца, здесь всегда был богатый выбор блюд — недаром в Китае существовала целая школа поварского искусства, специально приспособленная для удовлетворения вкусов буддийских монахов-вегетарианцев. Но при всей любви к китайской кухне, мне все-таки трудно было выдержать вечер с двадцатью-тридцатью переменами кушаний. Боюсь, что блюда, которые мы заказывали дома, оскорбляли профессиональное достоинство нашего «великого знатока», так как мы явно предпочитали плебейскую пищу всевозможным деликатесам, лишая его возможности продемонстрировать свое искусство.
Лекции в Цинь-Хуа я читал на английском языке, который хорошо понимали все студенты. Некоторые из них впоследствии стали специалистами в области чистой математики или электротехники. Жизнь разбросала их по многочисленным университетам Китая и Соединенных Штатов. В перерывах между занятиями я обычно потягивал чай, который постоянно держали наготове служители факультета, и без конца играл со своими коллегами в шахматы, крестики-нолики или го[113]. Но в игре в го я так и не стал мастером и среди знатоков математического факультета Принстонского университета и Института перспективных исследований до сих пор чувствую себя сущим младенцем.
Я продолжал работать с д-ром Ли над проблемами теории электрических цепей. Кроме того, мы начали одну лабораторную работу в этом направлении, но не довели ее до конца, так как столкнулись с техническими трудностями, которые в тех условиях оказались для нас непреодолимыми.
Идея, которую Ли и я хотели осуществить, состояла в том, чтобы, следуя Бушу, построить аналоговую счетную машину, работающую с высокой скоростью, характерной для электрических цепей, а не с гораздо меньшей скоростью, только и возможной при использовании вращающихся валов и других механических устройств. В принципе, этого вполне можно было достигнуть, и впоследствии другие исследователи сумели осуществить нашу идею. Нам же не хватило ясного понимания своеобразных проблем, возникающих при конструировании приборов, в которых движение на выходе передается обратно на вход и таким образом воздействует на дальнейшую работу прибора. Приборы такого типа в настоящее время хорошо известны как приборы с обратной связью.
Механизм обратной связи использовался уже Бушем в его счетных устройствах. Однако этот механизм сам по себе далеко не безобиден. Слишком сильная обратная связь неизбежно приводит к колебаниям всего прибора, которые невозможно успокоить. В случае сравнительно слабой обратной связи, используемой в механических интеграторах системы Буша, эту трудность легко преодолеть, но в применении к чисто электрическим устройствам, в которых обратная связь играет гораздо большую роль, проблема устойчивости оказывается куда более серьезной. Для того чтобы с ней справиться, мне следовало бы начать с самых основ и постараться построить последовательную полную теорию обратной связи. В то время я этого не сделал, и поэтому мы так и не добились успеха.
Основным моим делом, однако, было чтение лекций по обобщенному гармоническому анализу и по вопросам, которые излагались в книге, вышедшей под именем Пейли и моим. Одновременно я погрузился в новую область чисто математических исследований, связанных с так называемыми квазианалитическими функциями.