В Традиционный взгляд на мозг провозгласил творчество загадочным явлением, совершенно невозможным для понимания. Каждая ценная творческая идея должна быть логичной в ретроспективе (иначе нельзя было бы определить ее ценность), поэтому мы положили для себя считать, что более совершенная логика позволила бы достигнуть этой идеи, двигаясь в прямом направлении. Понимание работы мозга в качестве самоорганизующейся паттерн-системы с асимметрией в паттернах (как я объясню позднее) предлагает логический базис для провокации, случайного входа и других инструментов латерального мышления, которые используются для перехода от одного паттерна к другому.
Нам необходимо знать, какие практические результаты могут вытекать из понимания системы, называемой мозгом. Можно показать, почему существующие мыслительные привычки неадекватны и опасны. Можно предложить новое программное обеспечение, имеющее практическую пользу. Именно эти вопросы я намереваюсь рассмотреть в данной книге. Вниманием будут охвачены такие вещи, как истина, логика, рассудок, язык и — превыше всего — восприятие.
Можем ли мы действительно шаг за шагом пройти путь от понимания поведения нейрона в нейронной сети к пониманию — и совершенствованию — нашего мыслительного поведения в таких важных сферах, как политика, экономика, мировые конфликты и системы веры?
Можем, и именно этому вопросу посвящена данная книга.
Верна ли предлагаемая модель?
Как доказать, что объяснение механизма работы мозга, предлагаемое в данной книге, верное? Ответ на этот вопрос состоит из десяти частей.
1. Назначение науки в том, чтобы предлагать концептуальные модели устройства мира. Наука ничего не может доказать. Взгляды Ньютона на механику Вселенной казались совершенными, пока не сказал свое слово Эйнштейн. Очень скоро и взгляды Эйнштейна будут пересмотрены. Иногда концептуальную модель просто совершенствуют, иногда оказывается, что другие модели приводят к требуемым результатам, иногда исходную модель приходится менять полностью.
В этой книге я предлагаю модель самоорганизующей-;ся информационной системы на основе нейронной сети. ^Это концептуальная модель. Вполне ясно, что понимание работы мозга не будет вытекать из знания особенностей поведения каждого отдельно взятого нейрона в мозге. Подобное исследование не приведет к формированию 'представления о том, каким образом мозг должен быть организован, чтобы работать так, как он это делает.
Исследование конструкции вагонов и материала, из 'которого сделаны рельсы, не подарит нам концептуальной идеи того, как организована работа железной доро-ги. Нам нужна функциональная концепция, которая показывает, каким путем поведение взаимодействующих нейронов ведет ко всему многообразию мыслительной деятельности: юмору, творческому озарению, восприятиям, эмоциям и так далее.
Как я говорил ранее, догматическому невежеству нет места в науке: «Мозг слишком сложен, чтобы его можно было понять, поэтому нам его не понять никогда».
2. В общем и целом речь идет об очень широком классе самоорганизующихся систем, отличающихся от так называемых пассивных систем (традиционные компьютеры). Внутри этого широкого класса систем могут быть иные модели. В деталях они, скорее всего, будут различаться в широких пределах. Например, на месте нейронной связи может оказаться химическая и так далее.
Задача состоит в том, чтобы сделать означенный класс систем как можно более широким, но при этом быть в состоянии предсказывать определенные типы поведения. Простое сравнение между пассивными и самоорганизующимися информационными системами позволяет увидеть большое многообразие различий в поведении.
Некоторые исследователи считают, что мозг хранит информацию подобно голограмме. Возможно, так оно и есть, однако такое описание ничего не говорит нам о том, каким образом мозг переходит от одного состояния к другому (результатом чего является мышление). Голо-графическая концепция, как и многие другие, функционально совместима с моделью, предлагаемой здесь.
3. Рассматриваемая модель является очень простой системой, которая, однако, способна функционировать очень сложным способом. Это, безусловно, лучше, чем сверхсложные системы, поскольку биология явно тяготеет к простым системам со сложным поведением (генетический код представляет собой просто последовательность различных протеинов). Самое главное в том, что поведение системы, результатом которого становятся такие явления, как мыслительные паттерны, творческое озарение и юмор, вытекает из естественного поведения мозга, описываемого моделью. Данная система не могла бы вести себя никаким иным образом. Это совсем другое дело, чем сказать: «Теперь давайте сделаем юмор частью этой модели». Описательные модели, в которых просто утверждается, что «нечто происходит» или «некий механизм обеспечивает данный процесс», имеют низкую практическую ценность. Они напоминают детский рисунок коробочки, на которой написано: «Все происходит внутри».