Вещество относится к классу соединений, именуемых
Бутираты выделяют многие кишечные бактерии. На первый взгляд может показаться, что причина здесь та же, которую мы уже излагали выше. Выработка короткоцепочечных жирных кислот позволяет нам гораздо эффективнее использовать то, что мы едим. Данные, полученные при изучении безмикробных мышей, как будто подтверждают: бактерии делают именно это. Грызуны, лишенные естественных бактерий, обычно вынуждены есть на 10 % больше, чем мыши с нормальным микробиомом, чтобы поддерживать такую же массу тела. Это наблюдение позволяет по-новому взглянуть на пищевые волокна, к потреблению которых нас вечно призывают. Сложные углеводы, главный компонент клетчатки, обычно попадают в толстую кишку непереваренными. Мы привыкли думать, что они полезны, ибо каким-то образом помогают толстой кишке работать более гладко, увеличивая объем ее содержимого. Питаясь лишь такой едой, где нет клетчатки, вы рискуете заработать запор, а в конечном счете – рак толстой кишки.
Выяснятся, однако, что судьба клетчатки куда интереснее: это далеко не только добавка к фекалиям, доводящая их до необходимого объема[61]. Если в толстой кишке присутствуют нужные бактерии, крупные молекулы расщепляются при помощи бактериальных ферментов, давая короткоцепочечные насыщенные жирные кислоты. А те в свою очередь могут использоваться нашими собственными клетками для выработки энергии. Ацетат (обычно его производится втрое больше, чем бутирата) попадает в кровь, а потом используется мышцами и печенью, подобно глюкозе. Часть бутирата также абсорбируется из толстой кишки и применяется в печени. Однако свою важную метаболическую роль он начинает играть уже в толстой кишке, где быстро делятся эпителиальные клетки, жадные до бутирата. Не получая достаточного его количества, они переваривают собственное содержимое.
Прелестная, изящная схема: бактерии представляют собой удобный источник энергии для близлежащих человеческих клеток, которым эта энергия так нужна. Однако молекула бутирата, избежавшая съедения клетками человеческого тела, может проделывать множество других вещей. Похоже, существуют рецепторы, способные повсюду распознавать ее – по форме и по распределению электрического заряда между ее атомами. Сколько таких рецепторов? Вероятно, пока мы знаем не все, но давайте остановимся хотя бы на некоторых. Молекулярные взаимодействия в живых системах зачастую мимолетны. Представьте себе молекулу в жидкой среде, окруженную другими, постоянно толкаемую, да при этом еще и ее собственные атомы «вибрируют» или даже вращаются вокруг межатомных связей[62]. Она может совершить краткое «рукопожатие» с каким-то рецептором или участком идентификации, но затем ее выталкивают обратно в поток. Если бы оказавшемуся в толстой кишке бутират-иону вручали список «двадцати действий, которые необходимо соверщить, прежде чем вас метаболизируют», этот список мог бы начинаться следующим образом.
Найдите рецептор, сопряженный с G-белком, и соединитесь с этим рецептором. Речь идет об обширном семействе рецепторов, расположенных на поверхности клеток и проделывающих то, на что указывает их название; находясь на клеточной мембране, они связывают малые молекулы, имеющиеся во внеклеточном пространстве. Это небольшое изменение заставляет рецептор изменить форму. Затем он активирует какой-то G-белок (G-белки – один из классов белковых молекул), который после этого передает сигнал внутрь клетки, тем самым вызывая целый ряд эффектов.