Читаем Яблони на Марсе полностью

Чтобы прокормить 12-летнего мальчика телятиной в течение года, нужны 4 теленка. Телят кормит люцерна, и поля в 4 гектара для них достаточно. Но этой траве тоже нужна «еда» — солнечные лучи, их энергия. А теперь — простая арифметика. Из всей солнечной энергии, падающей на поле, люцерна использует для своего роста лишь 0,24 процента. Из энергии, накопленной люцерной, телята усваивают (на тот же рост) 8 процентов. Из энергии, запасенной, так сказать, телятами, мальчик берет, чтоб вырасти за год и увеличить свой вес на 3 килограмма, 0,7 процента.

Результат оглушительный — мальчику достается только миллионная доля энергии излучения! Остальные 999 999 растрачиваются впустую. Страшные цифры, если вдуматься. Выходит, что в природной кормовой цепочке человеку достаются какие-то жалкие крохи!

КПД — одна миллионная! В промышленности и говорить не захотят о такой машине. Подобную конструкцию инженеры не станут и рассматривать.

Тут необходимо, правда, отметить, что претензии наши к природе безосновательны. Она и не ставила перед собой цель прокормить человека. Она кормилец поневоле. Солнце заливает светом поле вовсе не для того, чтобы растить на нем люцерну. Люцерна растет не для того, чтобы ее жевали телята. А те бродят по полю совсем не ради того, чтобы стать отбивными. И у животных, и у растений свои задачи: им надо сохранить себя и дать потомство. А для этого необходимы и несъедобные рога, копыта, шкура, и не перевариваемые желудком человека стебли, листья, корни растений.

Что мы имеем от растений сейчас, нам известно, но есть ли надежда получить больше? Да. На рубеже прошлого и настоящего веков Тимирязев (уж сколько раз мы цитировали слова этого выдающегося исследователя!) писал: «Недалеко то время, когда… мы будем в состоянии разрешить вопрос, касающийся не только физиолога, но и практика, и экономиста, и, вообще, человека, интересующегося судьбами человечества… вопрос о предельном количестве органического вещества, которое человек в состоянии получить с известной площади земли при помощи растения…» И далее Тимирязев четко сформулировал научную стратегию — добиться увеличения коэффициента использования солнечной радиации растениями до 10–15 процентов.

Задумаемся над этими красноречивыми цифрами: 0,1 процента и 15 процентов, реальность и идеал — какие мощные резервы! Какие потенциальные возможности для прогресса уже существующего земледелия! Эти цифры никого не могут оставить равнодушными.


Опыты Варбурга


Ближайшая наша задача теперь — получить теоретически указанные Тимирязевым 15 процентов. Пусть это будет, так сказать, нашим «домашним заданием».

Тут нам придется еще раз вспомнить, что делает растение. Оно ловит световые кванты, порции лучистой энергии. Это — на входе, а на выходе растение выдает синтезированные им углеводы. Самопроизвольно химическая реакция образования углеводов не идет. Чтобы запустить этот процесс, и нужна энергия световых квантов. Сколько же их необходимо?

Расчеты показывают: для получения грамм-молекулы глюкозы или, что эквивалентно, грамм-молекулы кислорода (после отщепления от молекулы воды атома водорода остается кислород, который растение выделяет в атмосферу) нужно затратить примерно 120 килокалорий энергии. Поэтому трех квантов красных лучей, каждый красный квант несет 40 килокалорий энергии, было бы достаточно, чтобы процесс фотосинтеза шел с эффективностью 100 процентов.

Вот так, чисто теоретическим путем можно установить, что минимальное количество световых квантов — три. Но, конечно, потери неизбежны и действительное число квантов, эта величина в науке носит название «величины квантового расхода», должно быть большим. Каким?

За ответом я отправился к доктору биологических наук, сотруднику Института физиологии растений Академии наук СССР Леону Натановичу Беллу. Не один десяток лет этот ученый, физик по образованию, занят изучением термодинамики превращений солнечных лучей в растениях. Написанная им монография «Энергетика фотосинтезирующей растительной клетки» была удостоена высокой награды — премии имени К. А. Тимирязева. В книге этой подробно обсуждалась и одна из старых интригующих загадок фотосинтеза, вопрос о величине квантового расхода.

Первое измерение этой величины было выполнено еще в 1922 году знаменитым немецким биохимиком и физиологом, позднее лауреатом Нобелевской премии, открывшим природу и функции дыхательных ферментов, Отто Варбургом (1883–1970). Он дал метод исследований — респирометр, или просто аппарат Варбурга, прибор для определения небольших количеств выделяющихся газов.

Варбург предложил и очень удобный объект для исследований, одноклеточную водоросль — хлореллу (она придает изумрудный цвет тихим заводям и лужам), которая столь прославилась в более поздние годы. Замечательна хлорелла тем, что при размножении может делиться не на две, а сразу на 4, 8, 16, 32 и даже 64 части! Ее биомасса нарастает столь же быстро, как снежная лавина в горах…

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже