Земледелец древности брал то, что давала природа; в лучшие годы довольствовался урожаем в 3 центнера зерна с гектара. Переход к трехпольной системе земледелия и сохе, появление железного плуга, введение бобовых в севооборот удвоили урожаи, даже в 1913 году средний урожай зерновых по России составлял 8,2 центнера. Минеральные удобрения увеличили «природную дань» растений до 16 центнеров с гектара — это тот стопудовый урожай, о котором поется в народных песнях. Такие урожаи зерновых у нас в стране стали получать устойчиво лишь 10–15 лет назад.
Следующий рубеж связан с зеленой революцией. Создание сильных сортов, селекция на экстенсивный продукционный процесс довела цифры урожаев пшеницы до 50–55 центнеров с гектара. Конечно, всюду мы приводим средние цифры, отдельные достижения могут быть и выше. В Англии существует особый клуб фермеров. Его членом может быть только тот, кто регулярно собирает по 100 центнеров зерна с гектара. Так членство в этом клубе превращается в своеобразную рекламу.
100 центнеров с гектара — это реальность. Сейчас практики подбираются (во всяком случае, мечтают об этом!) к цифре 400 центнеров. Ну а можно ли поднять планку урожая выше? Кто ответит? Расчеты. И вести их без математики невозможно.
Первым попытался вывести уравнение урожая, померить числом труд земледельца, оценить, сколько человек в состоянии ожидать от поля, русский ученый член-корреспондент АН СССР Леонид Александрович Иванов (1871–1962). В 1941 году в сборнике работ по физиологии растений, посвященном памяти Тимирязева, появилась статья «Фотосинтез и урожай». В ней ученый дал первое, ставшее классическим, уравнение урожая.
Иванов отдал науке почти 70 лет своей долгой жизни, опубликовал около 200 научных трудов. А начался для московского гимназиста 6-го класса путь в науку тогда, когда во время летних каникул ему случайно попалась научно-популярная книга Тимирязева «Жизнь растения». Позднее Иванову посчастливилось слушать лекции Тимирязева в Московском университете на естественном факультете. Тогда-то и жизнь свою стал он планировать «по Тимирязеву» — начал изучать (биолог!) главным образом физику и химию и уж затем ботанику и другие биологические предметы.
Много раз Иванов круто менял свои научные пристрастия. Начинал с изучения водорослей, позже увлекался фосфором, его ролью в обмене веществ у растений, потом обратился к исследованию экологии и физиологии древесных растений — самых сложных растительных организмов. Большой опыт в изучении фотосинтеза (с 1940 года он возглавил лабораторию фотосинтеза в Институте физиологии растений АН СССР), желание сделать свою научную деятельность полезной для общества помогли Иванову, когда он писал статью «Фотосинтез и урожай».
Под урожаем, стремясь всемерно упростить очень сложную задачу, Иванов понимал вес всей вновь образующейся массы растений за учетный (летний сезон) период. А главным двигателем, который способствует накоплению зеленой массы растений, ученый считал фотосинтез.
В сущности, Иванов рассмотрел самый простейший баланс запасания (фотосинтез) и расхода (процесс дыхания) углерода в растениях. Этот баланс имел такой вид:
M + m = fPT – aP1
· T1где буквами обозначены: M — сухой вес растений за учитываемый период, m — вес отпавших за то же время частей (желтеющие листья, погибшие стебли и так далее), P — величина общей листовой поверхности (тогда еще считали, что интенсивность процесса фотосинтеза пропорциональна площади листвы), T — рабочее время фотосинтеза, f — интенсивность этого процесса, P1
— «дышащая масса», T1 — время дыхания, а — его интенсивность.Итак, простой баланс. Урожай (сумма M + m) тем больше, чем мощнее идет процесс фотосинтеза (fPT) и чем меньше потери (aP1
T1). Приход-расход, бухгалтерия, грозящая стать, мы в этом позднее убедимся, тонкой и изощренной математикой.К чему сводится работа земледельца? К тому, чтобы создать растениям по возможности комфортные условия. Прежде в сельском хозяйстве многое решалось на глазок, экспертным, так сказать, путем. Но время шло: копились знания, понимание совершающихся в недрах посева процессов становилось все более полным. Посев начали рассматривать как зеленую машину, которая потребляет из окружающей среды энергию и необходимые ей вещества и продуцирует нужную для человека органику. Собственно, это был уже чисто кибернетический подход. С позиций кибернетики идущие в посеве процессы можно изучать как функционирование некоторой очень сложной саморегулирующейся системы со множеством обратных связей.