Читаем Ядерные излучения и жизнь полностью

Деление ядерных излучений на корпускулярные и волновые хотя практически и удобно, но не совсем правильно, так как корпускулярные излучения имеют в определенной степени свойства волновых излучений, и наоборот. Так, электронные пучки, представляющие собой поток быстро летящих частиц - электронов, ведут себя подобно световым волнам. Они также могут преломляться и собираться с помощью электронных линз. На этом свойстве основано устройство одного из широко применяемых в научных исследованиях приборов - электронного микроскопа, с помощью которого можно получать огромные увеличения (в десятки и сотни тысяч раз), недоступные обычным световым микроскопам. Согласно квантовой теории, энергия, связанная с электромагнитными излучениями, в данном случае рентгеновскими и гамма-лучами, излучается и поглощается не непрерывно, а отдельными порциями - квантами (или фотонами). При этом величина квантов будет тем больше, чем больше частота и, следовательно, чем меньше длина волны излучения. Энергия квантов Е, выраженная в электрон-вольтах, связана с длиной волны λ соотношением

Е = 1230 / λ (эв),

где λ - выражена в нанометрах (1 нм = 10-9м).

После того, как была выяснена природа радиоактивных излучений, установлено, что источником этих излучений являются ядра атомов, а возникают они в результате происходящих в них процессов, которые получили название радиоактивного распада.

В чем же причина распада ядер радиоактивных элементов? Между частицами, входящими в состав ядра, действуют, с одной стороны, ядерные силы, скрепляющие ядро, а с другой - электрические силы отталкивания, возникающие между одноименно заряженными частицами - протонами. Ядра атомов устойчивы только тогда, когда существуют определенные соотношения между числом протонов и нейтронов. Если эти соотношения нарушены, происходит перераспределение частиц. Этот процесс сопровождается вылетом частиц из ядра, в результате чего образуются ядра элементов, обладающих иными химическими и физическими свойствами.

Таблица 1. Радиоактивные изотопы, применяемые при биологических исследованиях


Известны два основных вида радиоактивного распада:

I. Альфа-распад, сопровождающийся вылетом из ядра альфа-частицы. Примером такого распада может служить распад ядра радия с образованием радона:

Альфа-частица состоит из двух протонов и двух нейтронов. Следовательно, после вылета из ядра альфа-частицы образуется новое ядро, у которого атомный номер будет на два, а атомная масса на четыре меньше, чем у исходного ядра.

II. Бета-распад, при котором из ядра вылетает бета-частица, либо отрицательная, представляющая собой электрон, либо положительная, называемая позитроном. Масса позитрона равняется массе электрона, а заряд его по величине равен заряду электрона, но только имеет знак плюс. Позитрон - неустойчивая частица и при первой же возможности соединяется с электроном, в результате чего возникает гамма-излучение.

Примером бета-распада служит распад радиоактивных изотопов фосфора и бария:

В обоих случаях бета-распада, так же как при альфа-распаде, получаются новые элементы с отличными от исходного элемента свойствами.

При бета-распаде из ядра атома вылетает либо отрицательная, либо положительная бета-частица. Но в состав ядра входят только протоны и нейтроны. Откуда же берутся вылетающие из ядра бета-частицы? Дело в том, что и нейтрон и протон имеют сложное строение и могут превращаться друг в друга. Если один из нейтронов превращается в протон, при этом освобождается отрицательная бета-частица; если же протон превращается в нейтрон, освобождается положительная бета-частица. Этим объясняется и то, что в первом случае количество протонов, входящих в состав ядра, увеличивается, а во втором - уменьшается.

Гамма-лучи могут излучаться и при альфа-, и при бета-распаде. Если ядро, образовавшееся в результате радиоактивного распада, обладает избытком энергии, т. е. находится в возбужденном состоянии, оно излучает избыток энергии в виде кванта гамма-излучения. В этом случае альфа- или бета-излучение сопровождается гамма-излучением.

Гамма-лучи принято характеризовать энергией квантов излучения. В таблице 1 приведены значения энергии гамма-квантов, возникающих при распаде некоторых радиоактивных веществ. Чем больше энергия кванта, тем больше проникающая способность гамма-лучей.

Гамма-лучи и рентгеновские лучи обладают одинаковыми свойствами, однако энергия квантов рентгеновских лучей меньше, чем у гамма-лучей. Рентгеновские лучи получают в специальных рентгеновских трубках при торможении быстро летящих электронов. Таким образом, в отличие от гамма-лучей, рентгеновские лучи возникают вне ядра. Благодаря одинаковым свойствам рентгеновские лучи часто используют вместо гамма-лучей для экспериментального облучения животных и семян растений. Рентгеновские установки, применяемые для этой цели, дают лучи с максимальной энергией - 0,2 Мэв.

Перейти на страницу:

Все книги серии Проблемы современной науки и технического прогресса

Похожие книги

Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия