Читаем Ядерные излучения и жизнь полностью

Задача исследования космических лучей была достаточно сложна. Ведь земную поверхность надежно защищает от космических "неприятностей" атмосфера, толстый покров которой поглощает губительные для жизни на Земле коротковолновые ультрафиолетовые, рентгеновские, гамма-лучи и космическое излучение. Пришлось ученым в погоне за космическими пришельцами подниматься на самолетах, воздушных шарах, карабкаться на высокие горы и поднимать за собой громоздкую и сложную научную аппаратуру.

Выяснилось, что космические лучи - это потоки материальных частиц, таких же, как и те, из которых построено вещество Земли и всей Солнечной системы. На 85% состоят они из протонов-положительно заряженных ядер водорода, самого легкого элемента. Основную массу остатка составляют альфа-частицы - ядра следующего за водородом элемента гелия, стоящего на втором месте в таблице Менделеева. На долю более тяжелых ядер приходится примерно 1,5 - 1,6% общего числа космических частиц. Среди них различают легкие ядра с атомным номером 3 - 5 (ядра лития, бериллия, бора), средние - с номером 6 - 9 (углерод, азот, кислород, фтор), тяжелые - с атомным номером 10 - 20 и сверхтяжелые - с номером свыше 20. На долю последних приходится всего около 0,1 % излучения.

Рис. 20. Схема образования вторичных космических частиц при попадании в атмосферу первичной частицы космического излучения


Двигаясь по бесконечным космическим просторам, эти частицы разгоняются, достигают скорости, близкой к скорости света, и несут с собой колоссальную энергию, превышающую 1020 эв. Чтобы представить себе более наглядно величину этой энергии, достаточно сказать, что она во много миллионов раз больше энергии, генерируемой в самых мощных ускорителях частиц, созданных руками человека. Врываясь в земную атмосферу, такая частица постепенно теряет свою энергию, растрачивая ее на многочисленные столкновения с молекулами воздуха. Осколки молекул, оказавшихся на пути космической частицы, приобретая часть ее энергии, сами становятся факторами ионизации, разрушая другие атомы и выбивая из них электроны и другие частицы. Первичная частица космического излучения, как правило, не достигает поверхности Земли. Но о ее появлении в пределах земной атмосферы свидетельствует лавина вторичных частиц, образовавшихся в результате ионизации атмосферных газов (рис. 20). По количеству и составу вторичных частиц, по площади лавины можно в какой-то степени судить и об энергии первичной частицы.

Существование "ливней" вторичных космических частиц было открыто советским ученым Д. В. Скобельцыным, исследования которого положили начало систематическому изучению физики космических лучей. Для изучения ливней вторичных частиц космических лучей создаются специальные системы. На площади в несколько десятков квадратных километров располагается большое количество счетчиков заряженных частиц, соединенных между собой так, что они срабатывают только при одновременном попадании в них множества частиц.

Поскольку в земных условиях ученые еще не научились получать столь высокие энергии частиц, они с успехом пользуются гигантским природным ускорителем, разгоняющим космические лучи, и для целей изучения строения вещества. Именно с помощью космических лучей удалось открыть существование таких элементарных частиц, как мю- и к-мезоны, некоторые виды гиперонов. "Характер" и "биографию" элементарных частиц ученые узнают по следам - трекам, оставляемым ими в фотопластинках, которые физики поднимают в верхние слои атмосферы с помощью шаров-зондов, стратостатов, ракет, самолетов, искусственных спутников Земли.

В среднем интенсивность космического излучения за пределами земной атмосферы составляет, по расчетам ученых, около 2 частиц на 1 см2 в секунду. Эта величина почти не зависит от времени суток, времени года и практически постоянна. Поскольку Земля совершает движения вокруг своей оси, вокруг Солнца, которые не влияют на интенсивность космического излучения, приходится сделать вывод, что лучи эти приходят к Земле отовсюду из мирового пространства с примерно одинаковой интенсивностью; А если так, то вряд ли их основным источником может быть Солнце.

Загадка происхождения космических лучей продолжает волновать ученых и сегодня, хотя многое для ее решения уже сделано. Прежде всего была выяснена роль Солнца. Она оказалась очень небольшой. Солнце главным образом ответственно за наблюдающиеся время от времени повышения интенсивности излучения, связанные со вспышками на Солнце. О них речь идет в следующем разделе.

Перейти на страницу:

Все книги серии Проблемы современной науки и технического прогресса

Похожие книги

Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия