Читаем Янгель: Уроки и наследие полностью

Были в процессе проведения бросковых испытаний третьего этапа и казусные случаи. Так, при первом пуске макета БИ-3 № 1, как и положено, он вылетел из шахты. Поддон же, вместо того, чтобы уйти в сторону под действием пороховиков, упал обратно в контейнер, а стоявшие на нем пороховики улетели одни. Оказалось, что не выдержал возникшую нагрузку кронштейн, на котором крепились пороховики. Как и принято в таких случаях, срочно собралась аварийная комиссия. Заводчане, естественно, отстаивая качество своих узлов, по отработанной схеме в случившемся винят конструкторов и расчетчиков. Проектанты, наоборот, доказывают, что у них все в порядке. Страсти накаляются. И вдруг, доведенный до крайней степени возбуждения, руководитель испытаний в сердцах, повинуясь инстинктивному чувству, "хватил" находившийся у него в руках, целый кронштейн о край стола. А он, к неописуемому удивлению всех участников совещания, как стеклянный, раскололся пополам. Непредвиденное никакими правилами спонтанное оперативное испытание было настолько эффективным, что продолжать дальше дискуссию и выяснять, кто прав, а кто виноват не имело никакого смысла. Оказалось, что стенки кронштейна имели более чем достаточную толщину — около 60 миллиметров: но качество литейного сплава, из которого он был изготовлен, оставляло желать лучшего. Технологам пришлось заняться улучшением качества литья.

Однако на этом история с кронштейнами не закончилась. Намного позднее, уже в процессе отработки минометного старта при летных испытаниях были отмечены случаи схода поддона по нерасчетной траектории. Он отстыковывался, но не уводился на достаточное расстояние в соответствии с данными расчета. Причину нашли довольно быстро: на кронштейнах обнаружили трещины, которые приводили к их разрушению. Стало совершенно ясно, что литая конструкция кронштейна крепления порохового ракетного двигателя исчерпала себя. На сей раз было принято кардинальное решение — делать кронштейны кованными с последующей механической обработкой. И все изготавливаемые поддоны стали комплектовать новыми кронштейнами.

Но на одной из ракет, находившейся в шахте и подготовленной к пуску, предстояло произвести замену непосредственно в пусковой установке. Задача была не из простых. Нужно было спуститься лифтом вниз, добраться до хвостовой части ракеты, снять люк поддона, отстыковать ПРД увода поддона и только после этого заменить кронштейн.

Для проведения операции требовались смельчаки. Рискованное предприятие возглавил ведущий конструктор ракеты С.И. Ус, личным примером воодушевляя спускавшихся в шахту. Как выразился один из них:

— Тут уж было не до эмоций, когда у тебя над головой огромная заправленная ракета со скрытой в ней мощью, а ты находишься на самом дне пусковой установки. Страшно и жутко. Малейшая неточность при проведении любой из операций по снятию и установке ПРД и кронштейнов для их крепления — и взрыв неминуем.

Во многом успех работ определили маленький рост и умелые действия в ограниченном объеме одного из представителей военной приемки — В.М. Федюшкина. Операция по замене прошла успешно. Без замечаний был и последовавший затем пуск.

Проблемы порой возникали, как говорится, буквально на пустом месте. Казалось бы, безразлично, в каком направлении двигаться при установке опор на ракете в шахте: сверху вниз или снизу вверх, но на практике разница оказалась принципиальной.

Дело в том, что связь ракеты с пусковым контейнером осуществлялась с помощью регулируемых опор, каждая из которых состояла из трех полуколец, представлявших собой двухслойную конструкцию. Наружная часть кольца, скользившая по контейнеру, изготавливалась из фторопласта, а внутренняя, связанная неподвижно с ракетой, — из специальной резины. После выхода из контейнера кольца автоматически отстреливались разжимными пружинами. Для предотвращения попадания газов на поддоне была сконструирована специальная обтюрирующая манжета, которая герметизировала пространство между ракетой и пусковым контейнером. В поперечном сечении она напоминала форму знаменитого уса запорожца и крепилась основанием "уса" к поддону, а концом опиралась на контейнер. Такая форма манжеты обеспечивала надежную герметизацию ракеты при движении: газы пороховых аккумуляторов давления плотно прижимали манжету к контейнеру.

Если строго по центру выводилась верхняя опора, то за счет искривления корпуса нижняя его часть, а следовательно, и поддон могли значительно сместиться в одну сторону. Соответственно и обтюрирующая манжета в одном месте сильно прижималась к корпусу контейнера, а в другом — лишь слегка касалась его. В результате прорыв газов становился неизбежным. Такой случай произошел на одном из бросковых испытаний. Если же установку опор начинать с нижней, то уплотнительная манжета окажется строго центрированной. Возникающее же смещение верхней опоры никак не скажется на процессе выхода ракеты из шахты.

Перейти на страницу:

Похожие книги