Частицы во Вселенной делятся на два типа: фермионы и бозоны. Опыт показывает, что частицы, из которых состоит материя, являются преимущественно фермионами, а вот за взаимодействия в природе отвечают в основном бозоны. К фермионам относятся строительные блоки атомов, например электроны, протоны и нейтроны. Как мы убедились при рассмотрении белых карликов и нейтронных звезд, эти частицы обладают странным свойством, вытекающим из принципа запрета Паули: в одном квантовом состоянии может находиться не более одной частицы. При попытке поместить их в одинаковое состояние они расталкиваются квантовым давлением. Фаулер, Чандра и Ландау использовали это давление, чтобы объяснить, каким образом белые карлики и нейтронные звезды поддерживают свое состояние при массах ниже критической. В отличие от фермионов, бозоны не подчиняются принципу запрета Паули и при желании могут объединяться друг с другом. Примером бозона является носитель электромагнитной силы фотон.
Выведенное Дираком уравнение описывает квантовое физическое поведение электрона, одновременно удовлетворяя специальной теории относительности Эйнштейна. Это уравнение определяет вероятность обнаружения электрона, находящего в определенной точке пространства или перемещающегося с определенной скоростью. Уравнение Дирака определяется не в отдельном пространстве, а в соответствии с требованиями специальной теории относительности, оно единообразно определено во всем пространстве-времени. Оно содержит большое количество уникальной информации об окружающем мире и фундаментальных частицах. К удивлению автора, уравнение предсказало существование античастиц. Античастица — это двойник элементарной частицы, обладающий такой же массой, но противоположным зарядом. Античастицей электрона является позитрон. От электрона он отличается только положительным зарядом. Согласно уравнению Дирака, обе эти частицы должны существовать в природе. Также уравнение предсказывает, что в вакууме могут возникать пары электрон-позитрон, появляясь, по сути, из ниоткуда. Понять это странное явление крайне сложно, особенно с учетом того, что на момент формулирования Дираком уравнения позитронов еще никто не видел. Сведения об этих частицах Дирак скрывал до 1932 года, то есть до момента их обнаружения в процессе исследования космических лучей. На следующий год Дирак получил Нобелевскую премию.
Предложив свое уравнение, Дирак начал революционное переосмысление существующих в окружающем мире частиц и взаимодействий. Если квантовую физику электрона можно описать в том же контексте, что и электромагнитное поле, — то есть в рамках специальной теории относительности Эйнштейна, — почему нельзя квантовать электромагнитное поле как электрон? Вместо простого описания световых волн естественным образом должны были описываться фотоны, то есть кванты света, существование которых Эйнштейн постулировал еще в 1905 году. Квантовая теория электронов и света, известная как квантовая электродинамика, стала следующим шагом на пути объединения частиц и сил. Разрабатываемая после Второй мировой войны Ричардом Фейнманом, Джулианом Швингером и Синъитиро Томонагой, она указала новый способ изучения квантовой физики: квантованные частицы (электроны) и силы (электромагнитное поле) как одно целое. Квантовая электродинамика имела феноменальный успех, позволив своим создателям с удивительной точностью предсказать свойства электронов и электромагнитных полей и сделав их лауреатами Нобелевской премии.
Несмотря на то что она замечательно работала, квантовая электродинамика раздражала Поля Дирака. Ведь основой ее успеха стал метод вычислений, бросивший вызов внутренней вере Дирака в простоту и элегантность математики. Он назывался перенормировкой. Чтобы понять его суть, рассмотрим процедуру, которая в квантовой электродинамике используется для вычисления массы электрона. Масса электрона была точно измерена в лабораториях и составляет 9,1∙10-28
граммов — это очень маленькое число. Но уравнения квантовой электродинамики дают для этого параметра бесконечно большое число. Это связано с тем, что квантовая электродинамика допускает создание из ничего и последующую аннигиляцию протонов и короткоживущих пар электрон-позитрон — частиц и античастиц из уравнения Дирака. Появляясь из вакуума, все эти