Показав, что электричество и магнетизм можно описать в рамках одной всеобъемлющей теории — электромагнетизма, Джеймс Клерк Максвелл заложил фундамент для открытия Генрихом Герцем колеблющихся с разными частотами электромагнитных волн. В видимом диапазоне эти волны воспринимаются нашими глазами как обычный свет. На меньших частотах речь идет уже о радиоволнах, атакующих наши радиоприемники, передающих данные между ноутбуками по беспроводному соединению и позволяющих наблюдать чрезвычайно активные квазары в далеких закоулках Вселенной.
Через несколько месяцев после разработки общей теории относительности Альберт Эйнштейн показал, что пространство-время может содержать волны. Эти волны вызывают рябь как в пространстве, так и во времени. В этом смысле пространство-время напоминает пруд: стоит бросить в него камень, как по поверхности из одного конца в другой начинают разбегаться волны. И аналогично электромагнитным волнам и волнам на водной глади, гравитационные волны могут переносить энергию из одного места в другое.
Однако в отличие от электромагнитных волн обнаружить гравитационные волны оказалось крайне сложно. Они малопроизводительны в плане переноса энергии гравитационных систем. Вращаясь вокруг Солнца на расстоянии 150 миллионов километров от него, Земля медленно теряет энергию через гравитационные волны и сдвигается в сторону Солнца, сокращая расстояние на мизерную величину — примерно на ширину протона в день. Это означает, что за все время своего существования Земля приблизится к Солнцу примерно на
Остальные физики концепцию гравитационных волн не воспринимали. В течение почти полувека после того, как Эйнштейн обосновал их существование, многие отказывались верить в их реальность. Их считали еще одной математической странностью, которую можно было объяснить при глубоком понимании общей теории относительности. К примеру, Артур Эддингтон безапелляционно отвергал существование гравитационных волн. Повторив вычисления Эйнштейна и проследив, каким образом в теории появляются гравитационные волны, он продолжал утверждать, что это не более чем артефакт, зависящий от способа описания пространства и времени. Они явились следствием ошибки, неоднозначности в маркировке положений пространства и времени и от них можно избавиться. Это не настоящие волны, и в отличие от электромагнитных волн, распространяющихся со скоростью света, Эддингтон отказывался признавать волны, распространяющиеся со «скоростью мысли». По удивительному стечению обстоятельств сам Эйнштейн решил, что в исходные вычисления вкралась ошибка, и в 1936 году вместе со своим молодым ассистентом Натаном Розеном опубликовал в журнале
Самые убедительные аргументы в пользу гравитационных волн привел Герман Бонди на встрече в Чапел-Хил в 1957 году. Бонди, возглавлявший в Королевском колледже в Лондоне группу, занимающуюся теорией относительности, предложил простой мысленный эксперимент. Нужно пропустить стержень через два расположенных на небольшом расстоянии друг от друга кольца. Кольца должны быть плотно «надеты» на стержень, но при этом сохранять способность перемещаться вдоль него. Проходящая гравитационная волна на стержень влиять практически не будет, так как он слишком жесткий, чтобы ее ощутить. А вот кольца начнут смещаться вверх и вниз, как прыгающие на поверхности моря буйки. При прохождении волны они станут двигаться вдоль стержня взад-вперед, то сдвигаясь, то расходясь. Из-за трения о стержень в этом процессе будет выделяться энергия. А поскольку этой энергии неоткуда взяться, кроме как от гравитационной волны, следует вывод: гравитационные волны способны переносить энергию. Аргумент Бонди был простым и действенным. Аналогичные рассуждения представил присутствовавший на встрече Ричард Фейнман, что позволило убедить большинство собравшихся. Оставалось только на самом деле обнаружить гравитационные волны. Джо Вебера, который тоже был на конференции в Чапел-Хил, обсуждение просто заворожило. Бонди, Фейнман и остальные могли сколько угодно сидеть на месте, обсуждая реальность гравитационных волн, а он займется практической стороной вопроса и начнет их поиск.