Читаем Идеальная теория. Битва за общую теорию относительности полностью

Чарльз Мизнер, один из учеников Джона Уиллера, еще в 1957 году на конференции в Чапел-Хилл предупреждал о коварстве этих уравнений. В попытках распутать этот жуткий нелинейный клубок, оставленный в наследство Эйнштейном, нужно было проявлять большую осторожность, потому что, по словам Мизнера, было всего два возможных исхода: «либо программист застрелится, либо компьютер взорвется». В итоге случилось второе. В 1964 году, когда один из бывших учеников Уиллера Роберт Линдквист попытался провести компьютерное моделирование, в программе возникла критическая ошибка. По мере приближения черных дыр друг к другу ошибки в решении нарастали, и очень быстро компьютер начал выдавать мусорные данные — с ним случилось числовое недержание. Ошибки были столь труднопреодолимыми, что Линдквист предпочел отступить.

В 1970-х попытку с помощью компьютера понять, что происходит при столкновении двух черных дыр, предпринял Брайс Девитт. Квантовая гравитация всегда была его страстью, а во время работы с Эдвардом Теллером в рамках проекта по созданию бомбы в Ливерморской национальной лаборатории имени Лоуренса в Калифорнии он научился моделировать на компьютере сложные уравнения. В Техасе он поставил перед своим учеником Ларри Смарром задачу рассчитать, какова величина гравитационного излучения, возникающего после столкновения двух черных дыр. Написанную программу запустили на большом компьютере Техасского университета и смогли приблизительно представить себе, на что может быть похожа гравитационная волна. Затем снова возникла критическая ошибка, и пошел поток бессмысленной информации. Это был проблеск волны, но слишком слабый, чтобы им можно было воспользоваться. Сингулярности пространства-времени подняли свои уродливые головы и уничтожили результат.

Следующие три десятилетия команды программистов продолжали безуспешно работать над моделированием двойных систем. Дело двигалось, но, как вспоминал Франс Преториус, релятивист из Принстонского университета, «простые подходы не срабатывали, никто точно не знал почему, люди пытались что-то нащупать в темноте. Дело осложнялось недостатком вычислительных ресурсов, которые требовались для решения задачи в полной форме». В 1990-х проблема столкновения черных дыр считалась в США одной из фундаментальных задач вычислительной физики, и различным группам выделялись миллионы долларов на покупку суперкомпьютеров и запуск их программ. Время от времени там наблюдались улучшения, и результаты немного двигались вперед, пока снова не возникала ошибка. В итоге родилась отдельная область знаний — численные методы в общей теории относительности.

Моделирование столкновения черных дыр является знаковой для уравнений Эйнштейна работой, такой же сложной, неблагодарной и тяжелой, как регистрация гравитационных волн. Молодые релятивисты втягиваются в поиск компьютерного решения и тратят свою — часто недолгую — карьеру на небольшое улучшение уже имеющихся результатов. Все напоминает невероятно сложную компьютерную игру, часто ведущуюся на свой страх и риск, без промежуточных наград, пройденных уровней и триумфальных побед.

Для некоторых общая теория относительности стала равнозначна численным методам. Группа, занимающаяся общей теорией относительности, считалась неполной без одного или нескольких релятивистов, занятых решением проблемы столкновения черных дыр с прицелом на поиск гравитационных волн. Проводились конференции и встречи, на которых каждый желающий мог продемонстрировать новые приемы, схемы и графики. Но уравнения не поддавались. А без формы сигнала, найденной при моделировании двойных систем, не было надежды на их обнаружение с помощью детекторов.

Вспоминая эти мрачные времена, Преториус сказал: «Была большая вероятность, что задача окажется достаточно сложной и к моменту ввода в эксплуатацию [детектора гравитационных волн] она решена не будет». Экспериментальные данные могли начать накапливаться до того, как компьютерная модель даст приемлемый прогноз.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги