Читаем Идиот или гений? Как работает и на что способен искусственный интеллект полностью

Случилось следующее: перед конкурсом ImageNet каждой команде выдали тренировочные изображения, размеченные верными категориями объектов. Им также выдали большое тестовое множество изображений, не вошедших в тренировочное множество и не имеющих меток. Обучив программу, команда могла проверить ее работу на тестовом множестве – это помогает понять, насколько хорошо программа научилась обобщать (а, например, не просто запомнила тренировочные изображения вместе с метками). В зачет идет только результат, показанный на тестовом множестве. Чтобы проверить, как программа справляется с задачей, командам необходимо было показать программе все изображения из тестового множества, собрать топ-5 категорий для каждого изображения и загрузить этот список на “тестовый сервер” – компьютер, обслуживаемый организаторами соревнования. Тестовый сервер сравнивал полученный список с (секретными) верными ответами и выдавал процент совпадений.

Каждая команда заводила на тестовом сервере учетную запись и использовала ее, чтобы проверять, насколько хорошо справляются с задачей разные версии ее программы, что позволяло им публиковать (и рекламировать) свои результаты до объявления официальных результатов соревнования.

Главное правило машинного обучения гласит: “Не используй тестовые данные для тренировки”. Все кажется вполне очевидным: если включить тестовые данные в процесс тренировки программы, невозможно будет получить точную оценку способностей программы к обобщению. Не сообщают же студентам задания экзаменационного теста заранее. Но оказывается, что существуют неочевидные способы ненамеренно (или намеренно) нарушить это правило, чтобы казалось, будто программа работает лучше, чем на самом деле.

Один из этих способов таков: нужно загрузить выданные программой категории для тестового множества на тестовый сервер и отрегулировать программу в зависимости от результата. Повторить категоризацию и снова загрузить результаты на сервер. Провести эту манипуляцию много раз, пока скорректированная программа не станет лучше справляться с тестовым множеством. Для этого не нужно видеть метки изображений из тестового множества, но нужно получать оценку точности работы программы и регулировать программу соответствующим образом. Оказывается, если повторить всю процедуру достаточное количество раз, она сможет значительно улучшить работу программы с тестовым множеством. Однако, используя информацию из тестового множества, чтобы настроить программу, вы лишаетесь возможности использовать тестовое множество для проверки способности программы к обобщению. Представьте, что студенты проходят итоговый тест много раз, каждый раз получая единственную оценку и пытаясь на ее основании скорректировать свои ответы в следующий раз. В итоге студенты сдадут на проверку преподавателю тот вариант ответов, который получил самую высокую оценку. Такой экзамен нельзя считать хорошим показателем усвоения материала, поскольку он показывает лишь то, как студенты подогнали свои ответы к конкретным заданиям теста.

Чтобы предотвратить такое подглядывание данных, но в то же время позволить участникам соревнования ImageNet проверять, насколько хорошо работают их программы, организаторы ввели правило, в соответствии с которым каждая команда могла загружать результаты на тестовый сервер не более двух раз в неделю. Таким образом они ограничили обратную связь, которую команды получали в ходе тестовых прогонов.

Великая битва на конкурсе ImageNet 2015 года разгорелась за доли процента – казалось бы, пустяшные, но потенциально весьма прибыльные. В начале года команда Baidu объявила, что точность (топ-5) их метода на тестовом множестве ImageNet составила невиданные 94,67 %. Но в тот же день команда Microsoft объявила, что ее программа показала еще более высокую точность – 95,06 %. Через несколько дней команда конкурентов из Google сообщила об использовании немного другого метода, который справился с задачей еще лучше и показал результат 95,18 %. Этот рекорд продержался несколько месяцев, пока команда Baidu не сделала новое заявление: она усовершенствовала свой метод и может похвастаться новым рекордом – 95,42 %. Пиарщики Baidu широко разрекламировали этот результат.

Но через несколько недель организаторы соревнования ImageNet сделали краткое объявление: “В период с 28 ноября 2014 года по 13 мая 2015 года команда Baidu использовала не менее 30 учетных записей и загрузила результаты на тестовый сервер не менее 200 раз, значительно превысив существующее ограничение в две загрузки в неделю”[116]. Иными словами, команда Baidu попалась на подглядывании данных.

Перейти на страницу:

Все книги серии Книжные проекты Дмитрия Зимина

Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука
Скептик. Рациональный взгляд на мир
Скептик. Рациональный взгляд на мир

Идея писать о науке для широкой публики возникла у Шермера после прочтения статей эволюционного биолога и палеонтолога Стивена Гулда, который считал, что «захватывающая действительность природы не должна исключаться из сферы литературных усилий».В книге 75 увлекательных и остроумных статей, из которых читатель узнает о проницательности Дарвина, о том, чем голые факты отличаются от научных, о том, почему высадка американцев на Луну все-таки состоялась, отчего умные люди верят в глупости и даже образование их не спасает, и почему вода из-под крана ничуть не хуже той, что в бутылках.Наука, скептицизм, инопланетяне и НЛО, альтернативная медицина, человеческая природа и эволюция – это далеко не весь перечень тем, о которых написал главный американский скептик. Майкл Шермер призывает читателя сохранять рациональный взгляд на мир, учит анализировать факты и скептически относиться ко всему, что кажется очевидным.

Майкл Брант Шермер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Записки примата: Необычайная жизнь ученого среди павианов
Записки примата: Необычайная жизнь ученого среди павианов

Эта книга — воспоминания о более чем двадцати годах знакомства известного приматолога Роберта Сапольски с Восточной Африкой. Будучи совсем еще молодым ученым, автор впервые приехал в заповедник в Кении с намерением проверить на диких павианах свои догадки о природе стресса у людей, что не удивительно, учитывая, насколько похожи приматы на людей в своих биологических и психологических реакциях. Собственно, и себя самого Сапольски не отделяет от своих подопечных — подопытных животных, что очевидно уже из названия книги. И это придает повествованию особое обаяние и мощь. Вместе с автором, давшим своим любимцам библейские имена, мы узнаем об их жизни, страданиях, любви, соперничестве, борьбе за власть, болезнях и смерти. Не менее яркие персонажи книги — местные жители: фермеры, егеря, мелкие начальники и простые работяги. За два десятилетия в Африке Сапольски переживает и собственные опасные приключения, и трагедии друзей, и смены политических режимов — и пишет об этом так, что чувствуешь себя почти участником событий.

Роберт Сапольски

Биографии и Мемуары / Научная литература / Прочая научная литература / Образование и наука

Похожие книги

Антирак груди
Антирак груди

Рак груди – непонятная и пугающая тема. Суровые факты шокируют: основная причина смерти женщин от 25 до 75 лет – различные формы рака, и рак молочной железы – один из самых смертоносных. Это современное бедствие уже приобрело характер эпидемии. Но книга «Антирак груди» написана не для того, чтобы вы боялись. Напротив, это история о надежде.Пройдя путь от постановки страшного диагноза к полному выздоровлению, профессор Плант на собственном опыте познала все этапы онкологического лечения, изучила глубинные причины возникновения рака груди и составила программу преодоления и профилактики этого страшного заболевания. Благодаря десяти факторам питания и десяти факторам образа жизни от Джейн Плант ваша жизнь действительно будет в ваших руках.Книга также издавалась под названием «Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников».

Джейн Плант

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература