“Тесловоды” не обязаны присваивать метку каждому объекту на видео, сделанных во время движения их автомобилей. Но делать это необходимо. В 2017 году газета
Длинный хвост
Метод обучения с учителем, требующий больших данных и целых армий аннотаторов, хорошо работает по крайней мере с некоторыми зрительными способностями, необходимыми беспилотным автомобилям. (Многие компании также проверяют возможность использования напоминающих видеоигры программ-тренажеров, чтобы дополнить обучение с учителем.) Но что насчет остальной жизни? Почти каждый, кто работает в сфере ИИ, согласен, что обучение с учителем нельзя считать перспективным путем к созданию общего ИИ. Знаменитый исследователь ИИ Эндрю Ын предупреждает: “Сегодня необходимость такого большого объема данных серьезно ограничивает [глубокое обучение]”[137]. С ним согласен другой известный исследователь ИИ, Йошуа Бенджо: “У нас нет реальной возможности разметить весь мир и педантично объяснить все до последней детали компьютеру”[138].
Рис. 13. Ситуации, с которыми может столкнуться беспилотный автомобиль, выстроенные по вероятности возникновения в качестве иллюстрации “длинного хвоста” маловероятных сценариев
Ситуацию осложняет так называемая проблема длинного хвоста: огромный диапазон возможных непредвиденных ситуаций, с которыми может столкнуться система ИИ. На рис. 13 показано, какова вероятность возникновения различных гипотетических ситуаций, скажем, за один день езды беспилотного автомобиля. Вероятность возникновения типичных ситуаций, в которых автомобиль, например, увидит красный сигнал светофора или знак обязательной остановки, высока. Ситуации со средней вероятностью возникновения – появление на дороге битого стекла или летающего на ветру целлофанового пакета – возникают не каждый день (в зависимости от того, где ездить), но в них нет ничего необычного. Менее вероятно, что беспилотный автомобиль заедет на затопленную дорогу или не сумеет различить дорожную разметку, заметенную снегом, и еще менее вероятно, что посреди скоростного шоссе окажется снеговик.
Я выдумала эти сценарии и оценила их относительную вероятность. Уверена, вы можете продолжить мой список. Любой отдельный автомобиль, скорее всего, безопасен: в конце концов, в совокупности экспериментальные беспилотные автомобили проехали миллионы километров и стали причиной относительно небольшого количества аварий (хотя среди них оказалось несколько серьезных ДТП с человеческими жертвами). Однако, хотя каждая маловероятная ситуация по определению крайне маловероятна, в мире дорожного движения столько возможных сценариев и столько автомобилей, что при широком распространении беспилотников некоторые из них,
Термин “длинный хвост” пришел из статистики, где некоторые распределения вероятностей имеют форму, сходную с изображенной на рис. 13, и длинный список крайне маловероятных (но возможных) ситуаций называется “хвостом” распределения. (Ситуации в хвосте иногда называются пограничными случаями.) Такой феномен наблюдается в большинстве практических применений ИИ: события в реальном мире обычно предсказуемы, но остается длинный хвост маловероятных, непредвиденных ситуаций. Это становится проблемой, только если мы полагаемся исключительно на обучение с учителем при обеспечении нашей ИИ-системы знаниями о мире: в обучающих данных недостаточно примеров ситуаций из длинного хвоста – если такие примеры есть вообще, – а потому система более склонна к совершению ошибок при столкновении с такими непредвиденными обстоятельствами.
Рис. 14. Сообщалось, что полоски соли на шоссе, рассыпанные в преддверии снегопада, сбивали автопилот автомобилей