Аппарат Томсона для решения задачи с приливами работал несколько иначе, чем газонокосилка Буша. Геодезическая машина считывала рельеф местности со всеми холмами и ямками и даже канализационными люками, а потом выдавала график. А в машине для предсказания приливов и отливов, изобретенной Томсоном и его братом, которую они окрестили волновым анализатором, график использовался в качестве ввода данных. Оператор стоял перед длинной открытой деревянной коробкой на восьми ножках, из которой торчала стальная указка и рукоятка. Правой рукой он держал указку и чертил график уровня воды, вводил месячные данные по максимальному уровню прилива и отлива, а левой равномерно прокручивал ручку, которая приводила в движение шестерни, спрятанные в коробке. Внутри машины одиннадцать маленьких рукояток вращались со своей скоростью, каждая из которых обособленно выполняла одну из многих простых функций, детально воспроизводя хаотичность приливо-отливных течений. В конце работы на измерительных приборах появлялись одиннадцать маленьких цифр – средний уровень воды, действие Луны, действие Солнца и так далее, – что в итоге складывалось в уравнение, способное «установить приливы». Все это в принципе можно было вымучить вручную в блокноте, но, как сказал Томсон, это был «расчет, столь методичный, что для его произведения нужно было создать машину».
И это произошло. С формулой волны прибоя таблица приливов была теперь уже не просто отчетом о произошедшем, но прогнозом на будущее. Нарисуйте таблицу в виде графика, отправьте график в волновой анализатор и, наконец, воспользуйтесь полученными данными анализатора, чтобы испытать следующее изобретение Томсона – механический калькулятор размером со шкаф, состоящий из пятнадцати барабанов, который чертил ручкой и чернилами свой собственный график уровней приливов на будущий год. В 1876 году предсказатель приливов мог за четыре часа с высокой точностью начертить график на будущий год. К 1881 году это время составляло всего двадцать пять минут.
В 1876 году предсказатель приливов мог за четыре часа с точностью начертить график на будущий год. К 1 881 году это время составляло всего двадцать пять минут.
Данное изобретение было вежливо принято и так же вежливо отодвинуто в сторону. Даже в 1881 году лишь для немногих практических задач допускали возможность решения с помощью механизма. Многим казалось разумнее продолжать платить конторским служащим, чем массово производить прибор с такой ограниченной областью применения. Возможно также, что коллег Томсона оскорбила мысль, что любой отрезок их работы может быть автоматизирован стой же легкостью, что и труд рабочего на фабрике. Но самое важное, что, несмотря на то, что Томсон задумывал по-настоящему многофункциональную думающую машину, ключевой ее компонент отсутствовал – до тех пор, пока мировая война не дала новый толчок к поиску.
А теперь представьте, что в гавань с приливом заходит не корабль, а дредноут. Он покачивается на изменчивых волнах, готовый выпустить из своих орудий фугасный снаряд по движущейся цели, что расположена более чем в шестнадцати километрах за горизонтом. Представьте себе морское сражение между двумя вооруженными боевыми судами, которые до самого конца будут оставаться невидимыми друг для друга. На этом расстоянии длина волн, плотность воздуха на каждом уровне траектории снаряда, искривление земной поверхности и даже вращение земли во время полета снаряда определят в совокупности, ударит ли снаряд по воде или железу. Каждый из этих факторов формировал переменную величину опять же в дифференциальном уравнении. Морской бой такого радиуса действия был не просто перестрелкой, а математическим забегом (в котором наградой за второе место часто становилась могила на дне морском). В ходе самого крупного морского сражения Первой мировой войны, Ютландского сражения 1916 года, почти все корабли британского флота вступили в бой, имея орудия, которыми управляли люди. В итоге они поразили лишьтри процента целей, а потеряли свыше 6000 человек. Конечно же, с такими ставками в игре надежная думающая машина становилась ценным приобретением.