— Я сказал «программист, а не футболист»! Для программиста нет большего удовольствия, чем заставить программу работать. Программист отлаживает программу, то есть проверяет, как она работает, на известных ему примерах. Ну, скажем, ты знаешь, чему равен Н.О.Д. 12 и 30?
— Шести, — ответил Сережа, немного подумав, — 12 — это 2 х 6, а 30 — это 5 x 6.
— Итак, начинаем применять алгоритм Евклида. Малое — это 12, оно больше нуля, значит, повторяем: Н.О.Д. - 12, затем делим 30 на 12, получаем 2 и в остатке 6, значит, объявляем малым 6. Большим объявляем Н.О.Д., то есть 12, и возвращаемся к началу. Малое — это 6, оно больше 0, значит, повторяем снова: Н.О.Д. = 6, делим большое, то есть 12, на малое, то есть на 6, получаем ровно 2. Объявляем малым остаток, то есть малое теперь равно нулю. А большим объявляем Н.О.Д., то есть 6, и возвращаемся к началу. Но теперь малое равно нулю, а значит, повторять ничего не надо, мы уже нашли Н.О.Д. — это 6.
— Что-то не слишком быстро ты нашел ответ, — ехидно заметил Сережа, — я и то меньше думал.
— Долго было объяснять каждое действие, — сердито возразил Чип, — а потом любой алгоритм полезен только в достаточно сложных случаях. Вот посмотрим, как ты найдешь Н.О.Д. 256 и 288 без алгоритма Евклида, и потом сравним, насколько быстрее ты найдешь его с помощью алгоритма.
Двадцать спичек и монета
Сережа с Чипом играли в увлекательную игру «Двадцать спичек и монета». Кладутся подряд 20 спичек и 21-й — монетка. Дальше играющие по очереди берут спички, рассчитывая так, чтобы последним ходом забрать монетку. Надо только соблюдать два правила: во-первых, монетку нельзя брать первым ходом, а, во-вторых, если противник взял сколько-то спичек, то следующим ходом ты не можешь взять больше, чем это удвоенное число. Например, если он взял 5 спичек, то ты не можешь взять больше 10.