К тому же лечение рака — задача слишком объемная и многофакторная и явно не годится для первого применения ИИ в области медицины. Здравоохранение с использованием ИИ должно начинаться с более скромных задач с большими датасетами, необходимыми искусственному интеллекту для обучения, и это очевидно.
Судя по всему, ИИ и медицинские сообщества усвоили урок IBM Watson. Сегодня они сфокусировались на более подходящих для ИИ задачах — разработке новых лекарств и вакцин, создании мобильных устройств для продолжительного обследования-мониторинга, секвенировании ДНК, радиологии, патанатомии и лечении генетических заболеваний.
Кроме того, мы должны быть реалистами и выбирать задачи, подходящие для нынешнего здравоохранения (создавать то, что может продаваться через уже существующие каналы). Машины должны дополнять работу ученых и врачей, а не пытаться амбициозно их подменить. При таком прагматическом и ориентированном на имеющиеся данные подходе уже в ближайшие двадцать лет ИИ-здравоохранение, без всяких сомнений, может рассчитывать на великое будущее. Предлагаю рассмотреть подробнее некоторые задачи; начнем с создания новых лекарственных средств.
До сих пор разработка лекарств и вакцин была чрезвычайно трудоемкой и дорогостоящей. Например, на открытие и совершенствование вакцины от менингита человечество потратило больше века. В случае с ковидом фармацевтические компании смогли продвинуться намного быстрее, во многом благодаря беспрецедентным государственным расходам на клинические испытания и работе по нескольким параллельным направлениям разом (одно только правительство США и только в 2020 году потратило на это 10 миллиардов долларов).
Но окажись ковид действительно столь же заразным и смертоносным, как заболевания, вызывавшие пандемии раньше, нас бы не спасло, что вакцины пришлось ждать всего год. Так что почивать на лаврах еще не время, процесс нужно ускорять.
Разработка новых лекарств требует понимания того, как вирусные белки (последовательности аминокислот) складываются в уникальные трехмерные формы. Без расшифровки этих трехмерных структур не определить, как действуют вирусы и как, соответственно, с ними бороться. Например, спайковый белок SARS-CoV-2 образует «шип», который, подобно ключу, вставляемому в замок, прикрепляется («подходит») к рецептору на поверхности клеток человека.
После такой интернализации (усвоения) вирусный геном (в случае ковида — это РНК) передается клетке-хозяину и реплицируется (копируется) во многих органах, возникает заболевание со всей печальной симптоматикой.
Но ковид и лечится примерно так же — лечебная молекула присоединяется к патогену (как ранее — зловредный вирус к клетке) и подавляет его. По сути, разработка новых лекарств представляет собой поиск этой лечебной молекулы. Процесс состоит из четырех этапов:
1. Использование последовательности мРНК с целью определить последовательность белка патогена (сегодня это относительно несложно).
2. Определение трехмерной структуры последовательности белка патогена (сворачивание белка, по-другому фолдинг).
3. Поиск цели на этой трехмерной структуре.
4. Генерирование вероятных лечебных молекул и выбор из них наиболее перспективного кандидата для доклинических исследований.
Возвращаясь к упомянутой выше метафоре, этапы 1, 2 и 3 помогают найти «замок», а 4-й этап — подобрать к нему «ключик». Эти четыре шага необходимо проходить последовательно, и все, кроме первого, требуют немалых затрат времени и средств.
На 2-м этапе используются традиционные методы кристаллизации белков, в частности технология криоэлектронной микроскопии, позволяющая увидеть вирусные белки в их родной среде. На основе этой визуализации и строится трехмерная структура белка — это работа кропотливая и небыстрая.
Затем, на этапах 3 и 4, следует поиск целей, мишеней для лекарственного воздействия и разработка новых средств. Это тоже долго, процесс требует хорошей интуиции, большого опыта и, конечно, большой доли везения.
Препарат — кандидат на доклинические исследования может появиться через несколько лет и с вероятностью 90 процентов не пройдет их II или III фазу. На серии исследований тратится очень много времени. Конечно, если разрабатывать параллельно несколько вариантов (как это было с ковидом), дело можно ускорить, но при этом и сильно удорожить.