Читаем Иллюзия пользователя полностью

Но Тьюринг оснастил свою логическую машину бесконечно большой памятью. Он предусмотрел для машины возможность записывать свою деятельность на рулоне бумаги бесконечно долго. Эта бумага могла перемещаться вперед и назад, так что машина — как и печатная машинка — работала на определенном участке в определенный момент времени. Этот бесконечный рулон бумаги — лента — был бесконечным вот почему: на самом деле неважно, насколько точно машина выполняла свои инструкции. Ведь у нее было достаточно памяти и достаточно времени.

Тьюринг понял, что такая простая машина — которая известна сегодня как машина Тьюринга — могла бы на самом деле решить многие задачи Гильберта по дедукции — и как раз потому, что Гедель изобрел элегантный логический маневр, благодаря которому можно было рассматривать любой вид математических конструкций под видом чисел. Это была универсальная машина, способна решить любые арифметические задачи. Любые известные выполнимые вычисления можно было выполнить на машине Тьюринга, которая, следовательно, воплотила принцип счетной машины в ее чистом и обобщенном виде.

Но вскоре Тьюринг понял и кое-что еще: алгоритм может быть написан так, что будет для машины «не пережевываемым» в понятной для нее манере. Были числа, к которым она не могла подобраться. И не потому, что числа были слишком большими — а потому, что алгоритм был слишком непостижим: невозможно было сказать, сможет ли машина справиться с числом, пока операция не была выполнена — а это могло занять бесконечно много времени. Таким образом никто не мог знать, удастся ли ему получить результат в течение конечного периода времени.

Это значит, что Entscheidungsproblem Гильберта была неразрешимой. Мы не можем создать алгоритм, который говорил бы нам, может ли что-либо быть выведено из математической системы.

Это заключение важно само по себе — и к нему одновременно и независимо пришел и другой ученый — американский логик Алонзо Черч.

Но в открытиях Тьюринга есть и еще одна интересная вещь: ему удалось сделать сразу два открытия одновременно, летним днем, лежа на лугу. В своей биографии Алана Тьюринга Эндрю Ходжес описывает это так:

«Алан доказал, что не существует никакой «чудесной машины», которая могла бы разрешать все математические задачи. Но в процессе он открыл кое-что столь же чудесное — идею универсальной машины, которая могла бы взять на себя работу любой машины».

Тьюринг создал теорию машин, которые могли считать. Несколько лет спустя Вторая мировая война привела к тому, что значительные ресурсы были брошены на срочное развитие электронных компьютеров, особенно в Великобритании и США. Британцы пользовались ими, чтобы расшифровать секретные немецкие коды коммуникации. Американцы использовали их, помимо всего прочего, для создания атомной бомбы.

Со времен Второй мировой войны компьютеры стали обычным делом. Уже десятки лет человек увлечен идеей тех бесконечных возможностей, которыми наделили нас компьютеры и которые позволяют нам контролировать мир и следить абсолютно за всем.

Но факт заключается в том, что как только была изобретена концепция и теория вычислительных машин, Алан Тьюринг тут же осознал: мы не можем вычислить все. Человеческий разум оказался в состоянии сформулировать идею об универсальной вычислительной машине в тот самый момент, когда стало ясно: мы не в состоянии вычислить все механически. Существуют вопросы, возможность ответа на которые приходит только тогда, когда эти ответы получены — но не раньше.

Глубина этих отношений может оказаться для нас чуждой. Тезис Черча-Тьюринга просто утверждает, что мы можем вычислить все, что уже было вычислено. Вы можете делать все то, что, как вам известно, вы можете делать. А узнать, можете ли вы это сделать, вы сможете только после того, как уже сделаете!

Сегодня, когда компьютеры стали вездесущими, эта идея более знакома нам как «проблема остановки Тьюринга»: если говорить в целом, можем ли мы определить, когда компьютер закончит определенное вычисление? Ответом будет «нет»: мы не можем знать заранее, когда компьютер закончит вычисление (если, конечно, раньше он этого не делал).

Аналогично мы не можем знать, закончит ли компьютер вычисления вообще — до тех пор, пока он их не закончил. Пока он не закончил, мы не знаем, закончит ли он или будет продолжать работать вечно.

Это, конечно, не касается простых вычислений повседневной жизни — относительно них у нас есть большой опыт. Но мы знаем это только потому, что у нас уже есть подобный опыт. Нет принципиальных универсальных логических правил, которые могли бы сказать нам то, что было бы нам не известно.

Тезис Черча-Тьюринга и проблема остановки Тьюринга говорят нам о том, что мы не можем получить знаний иначе, чем через опыт. Невозможно заранее сказать, что произойдет.

В этом отношении компьютеры сходны с искателями истины и маленькими детьми. Все, что мы можем сделать — это ждать, пока они закричат: «Я закончил!».

Перейти на страницу:

Похожие книги

Психология недоверия. Как не попасться на крючок мошенников
Психология недоверия. Как не попасться на крючок мошенников

Эта книга — не история мошенничества. И не попытка досконально перечислить все когда-либо существовавшие аферы. Скорее это исследование психологических принципов, лежащих в основе каждой игры на доверии, от самых элементарных до самых запутанных, шаг за шагом, от возникновения замысла до последствий его исполнения. Что заставляет нас верить — и как мошенники этим пользуются? Рано или поздно обманут будет каждый из нас. Каждый станет мишенью мошенника того или иного сорта, несмотря на нашу глубокую уверенность в собственной неуязвимости — или скорее благодаря ей. Специалист по физике элементарных частиц или CEO крупной голливудской студии защищен от аферистов ничуть не больше, чем восьмидесятилетний пенсионер, наивно переводящий все свои сбережения в «выгодные инвестиции», которые никогда не принесут процентов. Искушенный инвестор с Уолл-стрит может попасться на удочку обманщиков так же легко, как новичок на рынке. Главный вопрос — почему? И можете ли вы научиться понимать собственный разум и срываться с крючка до того, как станет слишком поздно?..Мария Конникова

Мария Конникова

Психология и психотерапия