Таким образом, объект моделирования и модель могут быть любой природы – материальными или абстрактными. Например, макет самолета – это материальная модель. Cхема производства – абстрактная модель. Уравнения физики – это описание абстракций разных явлений материального мира. Модели могут быть и абстракциями других моделей. Наследование (создание одних классов на базе других) в объектно-ориентированном программировании – наиболее характерный пример таких построений [1].
При этом стоит помнить, что знать
1) добиться антропоморфной кинематики компьютерной модели тела человека;
2) получить модель характерных психических реакций человека;
3) смоделировать реакции различных социальных групп людей.
Во-вторых, существуют специальные процедуры проверки того, является ли модель точным представлением реальной системы, т. е.
При верификации, т. е. проверке достоверности модели, определяется, правильно ли концептуальная модель (модельные допущения) преобразована в компьютерную программу [1].
Валидация – это процесс, позволяющий установить, является ли модель точным представлением системы для конкретных целей исследования. Определяющим моментом в этих процедурах является положение: «модель и ее результаты достоверны, если руководители проекта признают их правильными» [16]. В итоге, если модель «адекватна», ее можно использовать для принятия решений относительно системы, которую она представляет, как если бы они принимались на основании экспериментов с реальной системой.
В-третьих, итоговый результат (т. е. «хорошая» или «плохая» модель получится) зависит от личности разработчика. Моделирование как метод научного познания предполагает творческий подход к объекту и целям исследования.
В этом виде научного производства не обойтись без развитого воображения, умения анализировать и делать обобщения. Хорошие модели – это «мини-теории», и их создание требует нестандартного мышления [1].
1.2. Исходные понятия и определения
Теория основ математического и компьютерного моделирования предполагает содержательное и формальное определение категорий, дефиниций и понятий с целью построения математических моделей сложных систем [2].
Основными методологическими категориями теоретических основ моделирования являются понятия «
Определение понятия «
Следующим важным понятием объектно-ориентированного подхода является «
В одном из разделов современной математики «теории категорий» объект используется как термин для обозначения элементов произвольной категории, играющих роль множеств, групп, топологических пространств и т. п. Здесь также вводится понятие класса объектов и проводится изучение свойств отношений между математическими объектами, не зависящих от внутренней структуры объектов.
Понятие «