Плакоидная чешуя, пришедшая на смену обычной рыбьей чешуе, стала новой кожей акул. Она представляет собой модифицированные зубы с внутренней полостью, заполненной тканью и кровеносными сосудами, покрытой твердым внешним слоем из карбоната кальция. У каждого такого зубика уникальная форма, однако базовое строение одинаковое. Оно напоминает дизайн велосипедного шлема: спереди зубики круглые, назад же отходят три ниспадающих гребня, каждый из которых сужается к концу. Зубики прилегают друг к другу, как черепица на крыше, покрывая все тело акулы. Если провести пальцем от головы акулы к хвосту, ее кожа будет гладкой на ощупь, если в противоположном – шероховатой.
Вдохновившись плакоидной чешуей акулы, сотрудники Гарвардской школы инженерных и прикладных наук стали искать способы улучшения аэродинамики крыльев. Они взяли гладкое крыло, добавили к нему напечатанную на 3D-принтере плакоидную чешую и стали исследовать влияние на аэродинамику. При помощи сложного программного обеспечения инженерам удалось провести испытания в цистернах с водой и сделать компьютерный анализ гидродинамики. Они обнаружили, что за крылом с прикрепленными плакоидами образовывались вихри. Возникала короткая область местного отрыва потока. Зубики образуют вихри, благодаря которым лобовое сопротивление снижается на 10 % [11]. Кроме того, инженеры из Гарварда выяснили, что зубики способствовали увеличению подъемной силы и даже помогали поддерживать ее и при более высоких углах набегающего потока. Таким образом, плакоидная чешуя одновременно и увеличивает подъемную силу, и снижает сопротивление, что приводит к отличным гидроаэродинамическим результатам [12].
Это объясняет молниеносную скорость движения акулы в воде, и инженеры мечтают сымитировать строение тела акулы и применить его на самолетах, вертолетах и других воздушных судах. Кроме того, инженеры могут использовать его при проектировании ветряных турбин, чтобы улучшить их производительность. В недалеком будущем могут появиться различные улучшенные формы крыльев, так что обществу нужно благодарить акул за то, что они вдохновляют инженеров на совершенствование дизайна.
Помимо мозга и плакоидной чешуи, природа одарила акул и другими новшествами. Одно из наиболее существенных среди них – печень, способная хранить запасы жира и поддерживать акулу на плаву на длинных дистанциях. С ходом эволюции рыбы стали полагаться на плавательный пузырь, который обеспечивает плавучесть и позволяет экономить энергию. Обычно это два наполненных газом мешка, расположенные в спинной части. Акулам, у которых плавательный пузырь отсутствует, тоже нужно было что-то для поддержания плавучести. Печень, способная выступать в роли резервуара жировых запасов, выполняет двойную функцию: она снимает проблему плавучести и обеспечивает акулу энергией для преодоления длинных дистанций.
Однако путешествия на длинные дистанции стали возможны не только благодаря жировым запасам. У акул есть грудные плавники, которые расходятся в стороны подобно крыльям самолета. Акула использует хвост, чтобы двигаться вперед, а грудные плавники – для вертикальных перемещений. Хотя жир в печени и способствует плавучести, у большинства акул она отрицательная. Это значит, что их тело плотнее вытесняемой жидкости, и они могут утонуть, если не будут двигаться. Однако белым акулам удалось извлечь пользу из этого очевидного недостатка. Когда акула при помощи хвоста начинает движение, развернув грудные плавники книзу, отрицательная плавучесть позволяет ей скользить вниз, затрачивая минимум усилий. Достигнув определенной глубины, акула разворачивает боковые плавники кверху и, используя хвост в качестве мотора, снова может подниматься. Такой тип плавания называется дрифт-дайвингом, он позволяет акулам с высокой эффективностью преодолевать большие расстояния, поскольку в таком случае затрачивается гораздо меньше энергии – в некоторых случаях на 50 % меньше, чем если бы акула плыла прямо на определенной глубине [13].